Example of ALMN format:
PEAK 61.50 20.45 113.50 0.00000 0.00000 0.00000 9.9 0.0
Example of AMORE format:
SOLUTIONRC 1 61.50 20.45 113.50 0.00000 0.00000 0.00000 9.9
Both of these are read in free format, i.e. at least 1 space separating all character and numeric items.
Possible keywords are -
ALMN, ANGLES, CHI, END, NUMPEAK, ORTHOG, PEAK, SPACEGROUP, TITLE
set verbose
ecalc HKLIN mrenin HKLOUT mrenin_ecalc <<EOD
TITLE ** Ecalc for mouse renin crystal. **
LABI FP=FPmrenin SIGFP=SPmrenin
EOD
amore HKLIN mrenin_ecalc HKLPCK0 mrenin_ecalc.hkl <<EOD
TITLE ** Packing h k l E for mouse renin crystal. **
SORT
LABIN FP=E
EOD
rm mrenin_ecalc.mtz
pdbset XYZIN hexpep XYZOUT hexpep_rfcell <<EOD
SPACEG P1
CELL 80 84 97
EOD
sfall XYZIN hexpep_rfcell HKLOUT hexpep_rfcell <<EOD
TITLE ** Structure factors for hexagonal pepsin in RF cell. **
MODE SFCALC XYZIN
SFSG 1
SYMM 1
RESO 20 3
EOD
ecalc HKLIN hexpep_rfcell HKLOUT hexpep_ecalc <<EOD
TITLE ** Ecalc for hexagonal pepsin model. **
LABI FP=FC
EOD
amore HKLIN hexpep_ecalc HKLPCK0 hexpep_ecalc.hkl <<EOD
TITLE ** Packing h k l E for hexagonal pepsin model. **
SORT
LABIN FP=E
EOD
rm hexpep_rfcell.mtz hexpep_ecalc.mtz
amore HKLPCK0 mrenin_ecalc.hkl HKLPCK1 hexpep_ecalc.hkl \
CLMN0 mrenin.clmn CLMN1 hexpep.clmn MAPOUT mrenin_cross \
>! mrenin_cross.log <<EOD
ROTFUN
TITLE ** Cross rotation function with E's. **
CLMN CRYST ORTH 3 RESO 20 3 SPHERE 35
CLMN MODEL 1 RESO 20 3 SPHERE 35
ROTATE CROSS MODEL 1 NPIC 20
EOD
rm mrenin_cross.map
amore HKLPCK0 mrenin_ecalc.hkl CLMN0 mrenin.clmn \
MAPOUT mrenin_self <<EOD
ROTFUN
TITLE ** Self rotation function with E's. **
ROTATE SELF NPIC 20
EOD
grep SOLUTIONRC mrenin_cross.log >! mrenin_cross.dat
rfcorr MAPIN mrenin_self PEAKS mrenin_cross.dat <<EOD
TITLE ** Mouse renin self/cross rotation function correlation. **
SPACEG p2
ORTH 3
CHI 180
EOD
The output below shows the 222 non-crystallographic symmetry. The first table
echos the 8 input peaks from the cross-rotation function. The second table
shows the positions of the 10 points in the self-rotation function above the
default threshold corresponding to the non-crystallographic 2-fold axes (chi ~=
180) that relate pairs of the highest 4 peaks, including symmetry related,
in the cross-RF. The last table shows the ~90 deg angles between these points
in the self-RF.
Peak Alpha Beta Gamma
1 61.50 20.02 113.50
2 68.33 26.06 107.24
3 112.50 154.69 289.00
4 116.00 157.55 293.50
5 103.14 88.09 166.45
6 70.12 116.85 97.56
7 67.00 105.43 97.30
8 114.90 8.17 100.72
Serial #Peak #Peak(#Symm) Theta Phi Chi self-RF
1 3 4 ( 2) 2 81 179 78.75
2 1 2 ( 2) 3 87 179 51.59
3 2 3 ( 2) 90 180 179 39.46
4 2 3 ( 1) 90 90 180 39.46
5 1 3 ( 2) 90 179 174 37.41
6 1 3 ( 1) 87 89 179 37.41
7 1 4 ( 1) 89 89 179 32.41
8 1 4 ( 2) 89 179 178 32.41
9 2 4 ( 2) 90 179 176 25.68
10 2 4 ( 1) 88 89 179 25.68
Inter-vector angles: Serial[i] Serial[j] (Symm[j]) Angle, in 4 columns.
1 2( 1) 2 1 2( 2) 5 1 3( 1) 90 1 3( 2) 90
1 4( 1) 88 1 4( 2) 89 1 5( 1) 90 1 5( 2) 89
1 6( 1) 89 1 6( 2) 86 1 7( 1) 89 1 7( 2) 87
1 8( 1) 90 1 8( 2) 89 1 9( 1) 90 1 9( 2) 89
1 10( 1) 86 1 10( 2) 90 2 3( 1) 90 2 3( 2) 90
2 4( 1) 86 2 4( 2) 87 2 5( 1) 90 2 5( 2) 90
2 6( 1) 90 2 6( 2) 84 2 7( 1) 88 2 7( 2) 86
2 8( 1) 90 2 8( 2) 89 2 9( 1) 90 2 9( 2) 89
2 10( 1) 85 2 10( 2) 89 3 4( 1) 90 3 4( 2) 90
3 5( 1) 1 3 5( 2) 1 3 6( 1) 89 3 6( 2) 89
3 7( 1) 89 3 7( 2) 89 3 8( 1) 1 3 8( 2) 1
3 9( 1) 0 3 9( 2) 1 3 10( 1) 90 3 10( 2) 90
4 5( 1) 89 4 5( 2) 89 4 6( 1) 3 4 6( 2) 2
4 7( 1) 2 4 7( 2) 1 4 8( 1) 89 4 8( 2) 89
4 9( 1) 90 4 9( 2) 90 4 10( 1) 2 4 10( 2) 3
5 6( 1) 90 5 6( 2) 90 5 7( 1) 90 5 7( 2) 90
5 8( 1) 0 5 8( 2) 1 5 9( 1) 0 5 9( 2) 1
5 10( 1) 90 5 10( 2) 90 6 7( 1) 2 6 7( 2) 4
6 8( 1) 90 6 8( 2) 90 6 9( 1) 90 6 9( 2) 90
6 10( 1) 5 6 10( 2) 1 7 8( 1) 90 7 8( 2) 90
7 9( 1) 89 7 9( 2) 89 7 10( 1) 3 7 10( 2) 1
8 9( 1) 1 8 9( 2) 1 8 10( 1) 89 8 10( 2) 89
9 10( 1) 90 9 10( 2) 90