
Notes on Measurement Errors

(Some material in this -handout excerpted from Stan Micklavzina's "Guidelines for

Reporting Data" and from William Lichten's "Data arid Error Analysis," Allyn and Bacon)

Measurements are Central to Science. The laws of science are discovered through

measurements. They are hypothesized from a related set of real-world measurements. They

are verified and refined by means of critically designed measurements. Any law that has been

contradicted by even a single measurement must be discarded immediately and be replaced by

another. Measurements are the final authority in science. This paradigm has been an

essential ingredient for the development of science in Europe starting about 500 years ago.

The centrality of measurements remains unaltered in science today. As scientists, we must

learn all we can about measurements.

Measurements are Approximate. Let's suppose you measured the length of your pencil with a

ruler. It is incorrect for you to claim, "My new pencil is exactly 192 millimeters long." If you

were to use a more exact measuring device you might say, "Oops! My pencil is 192.16

millimeters long." Your first measurement is good to the nearest millimeter; your second is

good to the nearest 0.01 mm. We say that both values are inexact or approximate; both are

subject to measurement uncertainties (or errors). The rest of this note discusses these

uncertainties and how they affect our confidence in our own measurment results.

Mistakes Versus ErroIS. The word "error" has a special non-colloquial meaning in science.

Error is different from mistake. Mistakes, such as measuring a 32-em-Iong object to be 42 em,

can be avoided. As we shall see, errors cannot be avoided, even by the most careful

measurements. lienee, errors quantify the degree of confidence we have in the associated

measurements.

Precision Versus Accuracy: Random and Systematic ErroIS. Let's go back to the example of

the pencil. Suppose everyone in the class uses the same ruler, measures the pencil to the

nearest millimeter, and all agree it is 192 mm long. All say that it couldn't be either 191 or

193 mm long. We say that the class has measured the length of the pencil to a precision of

1 mm. Precision is the reliability or repeatability of a measurement. Suppose that the

instructor now points out, "You all have made the same mistake. You lined up one end of
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the pencil and one end of the ruler together. The end of the ruler is worn badly; it doesn't

begin at zero. Try to remeasure the pencil by putting it in the middle of the ruler. Then find

the position of both ends." (see Table 1 below.) "Subtract one value from the other to find the

length." Now the class finds that the pencil is 187 mm long! How can this be? Both

measurements are equally precise. The second one is more accurate than the first, because a

systematic error (caused by the worn end of the ruler) is no longer there. A systematk

error is an effect that changes all measurements by the same amount or by the same

percentage. The class's experience with the ruler is a mirror of the history of science.

Systematic errors have often crept unsuspectedly into measurements. The only way to

eliminate systematic errors is to look carefully for them and to understand well the nature of

the experiment or measurement.

TABLE 1 Measure8ent of the Length of a Pencil.

Random Errors: We Can Not Avoid Them. Let's return to the example of the class.

measurement of the length of a pencil; when measuring to the nearest millimeter, everyone

got the same value. Let's try to push the precision further and ask each person to measure to

the nearest tenth of a millimeter. Now disagreements appear. We find different values:

186.7, 187.0, 187.3 mm, as shown. Is someone making a mistake? No, even the most

careful and skillful person will come up with values that vary by one- or two-tenths of a

millimeter. Now we are at the limit of measurement by use of the naked eye and rulers. The

unavoidable change in successive measurements, due to small irregularities in the ruler,

difficulty in estimating precisely, and the like, is called a random error, or error for short.

Your Best Estimate. Thus far, you have been careful not to make any mistakes, you have

avoided all systematic errors, and you have narrowed your uncertainty to the random error of

measurement. What's next? Common sense tells you to take the average of several

measurements, called the arithmetic mean or mean. The algebraic expression for the
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Left End (cm) Right End (em) Length (em) Deviation from Mean

10.16 28.83 18.67 -0.03

15.87 34.57 18.70 0.00

20.22 38.95 18.73 +0.03



average of N numbers is

The data scatter gives you an idea of the random error of measurement. A handy measure is

the average deviation from the mean, sometimes shortened to average deviation. You

can get this by finding the difference between each measurement and the mean and then

taking the average. (You count all deviations as positive for this calculation.)

N

Average deviation = ~}' IXj-xlt=f.

The final result is 18.70(2) em = 18.70 :t 0.02 em. Note two ways of showing the error: the

symbol :t precedes the error, or parentheses show the error in the last place. You willleam

later that, if you take three measurements, the average deviation is a remarkably good

estimate of the error of your measurement. Let's go over this again: Take three

measurements. Take the average as your best estimate of the true value. Take

the average deviation as an estimate of the error of measurement. This is a good

rule of thumb that has several advantages. It's simple. It's easy to do the calculations; most

of the time you can do them in your head or on a very small piece of paper.

Relative and Percentage Errors. So far, an error has had the same units as the measured

quantity: it has been so many millimeters or so many grams. (Sometimes the name absolute

error is used in this connection.) If an astronomer gave the distance to the moon to the

nearest meter, we would consider it a breathtaking triumph of a measurement project. But if

you wanted to order a ball bearing, you would need to know the shaft diameter to a very

small fraction of a millimeter. Absolute errors should be compared with the measured

quantity always. In scientific measurements, it often is meaningful to express errors in

fractions or per cents.

error
Relative error in a quantity= measured quanity

. 100 x error
Percentage error in a quant~ty= measured quantity

Example: Errors in Measuring with a Meter Stick
Discuss the two sources of error of measurement with a meter stick. The first
occurs because 1 mm is worn offthe zero end of the stick. The second is due to a

uniform shrinking of the meter stick over its entire length by 1 mm. In
particular, calculate the differenttypes of errors for measur~ng two objects: one
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is reportedto be 0.999 m long; the second is reported to be 10 cm long.
Solution. The worn end of the ruler causes the same error. No matter what the
leng~n ot the object, it will appear to be 1 mm longer than its true value. On
the other hand, the uniform shrinkage of the meter stick causes the same
fractional or percentage error. We first note that the meter stick is actually
999 mm long. The 999-mm-long object would appear to be 1 m long and the error in
measuring the length would-be 1-mm. .The fractional error would be (1 mm I 999mm).
The percentage error would be 0.1%. For the short object, the worn end causes an
error of 1 mm, a fractional error of (1 mm I 100 mm = 0.01), and a percentage
error of 1%. The shrinkage of a 10 cm length of the ruler is only one-tenth of
the shrinkage of 1 m. Thus the error is 0.1 mm. The fractional error is (0.1 mm
I 10 cm) = 0.001, the same as for the long object. The percentage error is again
0.1%. The uniform shrinkage or expansion of an meter stick or any other scale
causes the same fractional or percentage error.

Si~cant Figures.

RULE: Experimental values - both measurements and results

calculated from these measurements - should always be
reported with only one uncertain digit.

As you have seen in previous discussions, the right-most digit of any experimental

measurement contains an error. "Significant figures" are those digits which have significance

- which have meaning. If you had measured the length of this page with a mm-ruler and

given the result as 279.33 mm, you would be incorrect. The smallest division is a mm, and

you can estimate one more digit corresponding to a place between two divisions. Youhave

absolutely no information on hundredths of a mm. That is, in this measurement, the tenths

place is somewhat uncertain but the hundredths place is completely uncertain - it has no

experimental significance. So your reported value should be 279.3 but not 279.33, or 279.

Things were simple before calculators. If you carried out your calculations with a slide rule

(an antiquated hand calculator known only to persons born before 1955) you would be

limited to three figures. If you did them by hand, you would be only too happy to round off.

But, because at the touch of a button you have eight or nine digits displayed before your eyes,

you will have difficulty with this simple rule. The calculator makes life difficult because you

must decide which of these digits are uncertain, and you must round off all but one uncertain

digit. The rules for rounding off are as follows:
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Examine the digits to be discarded.

If the first digit is larger than a 5, round up.

If the first digit is less than a 5, round down.

If the first digit is a 5 followed by other digits, at least one of which

is not zero, round up.

If the first digit is 5 followed only by zeros, or by no other digits at

all, round up or down to make the last digit retained even. [For

example, 2.55 is rounded to 2.6, while 2.45 is rounded to 2.4.]

.

This business of "significant figures" is the simplest of the error analysis, which you will try to

master throughout your scientific career. For the moment, let's look at a few examples to

establish useful rules about significant figures. To keep track of uncertain digits, they will be

emboldened and underlined in these examples. Suppose you have the object made up of

three separate component parts - a ball, a cylinder and a plate. You measure the masses by

using a precision analytical balance for the ball and the cylinder and a triple beam balance for

the plate. The masses are .282 gm, 79.545 gm and 422.23 gm. The total mass is

0.282

79.545

422.23

502.057

The result as written is incorrect - it has two uncertain digits. To conform to the rule, the

mass must be rounded up, and be written as 502.06 gm. Note that this isn't at all profound!

What we are saying in this example is that if you can only measure the mass of one part of

the object to a precision of hundredths of a gram, you cannot possibly know the mass of the

composite object to a precision of thousandths of a gram. The general rule for addition,
which works as well for subtraction is: When calculating an experimental result by

adding or subtracting experimental data, round off so only one uncertain digit
remains in the result.

Now suppose we want to find the area of a rectangle. The length, measured with a meter
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stick, is found to be 11.23 em and the width, measured with a vernier caliper, is found to be

.332 em. The area is

x
11.23

.332

2246

3369

3369

3 .72836

The correct result is 3.73 em2. Notice that the result has 3 significant digits--the same number

as in the width. This result illustrates the following rule of thumb: When calculating an

experimental result by multiplying or dividing experimental datCl;,round off the

result so that it has only as many significant figures as the data value with the

smallest number of significant figures.

Another quasi-rule often used by practitioners is: Add a significant digit when the first

digit is a 1. Thus 3 x 0.34 = 1.02, not 1.0.

One last but important point. Consider a length 35.9 m, which can also be written as 3590

em. But these two numbers have very different meanings. The first says that the 9 is

uncertain while the second implies that only the last 0 is uncertain. If it is the 9 which is

uncertain~ how'should we write the result properly in em? . The answer,is,3.59XH1~,'em.

Note that there are now only three significant figures.

Propagation of Errors: Small refinement of the SigFig. When measured quantities are

combined (Le., added or multiplied together), the rules associated with significant figures

enabled us to make sensible statements about the resulting quantity. Consider the area of the

rectangle treated above, which was 3.73 em2. The most conservative position we can take

about this number is that the area has a value somewhere within the range bound by 3.700

and 3.800. Frequently, the uncertainty is smaller than that indicated by the rules of
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significant figures. The question is, "Is there a simple way to track the error propagation?"

The answer is yes. Again, the simple rules we will develop here mirror more rigorous results

which you will learn later.

Let us calculate the area of a square, whose side is measured to be L = 6.71 :t 0.02 em. Let's

write this as

L=6.71x[1:t~],

where the bracketed quantity is a mathematical construct, not a measured quantity. Here, 8

must be equal to ( 0.02 / 6.71 ). We get, upon squaring,

A=L2= (6.71)2x[1:t~]x[1:t~],

where we note that the first and the second 8 are completely correlated. In fact they are one

and same. Hence,

A=45.0X[1:t2~ +O(~2)].

This should remind you a lot of the beginning of the differential calculus. In fact the error

analysis does deal with negligibly small quantities in the same way the calculus does. In the

following discussion, our measurement errors will be referred to as standard errors and are

denoted by the variable u with appropriate suffixes. You will learn the exact relationship

between our measurement errors and standard errors later.

Propagation of ErroIS: Single Measurement. Let us assume that we made a measurement of

an x and ask how the standard error Uxpropagates as different functions of x are computed.

It is convenient to consider not only the error itself, but also the relative (fractional) error

(ux / x). In error theory, we always consider the fractional error to be small compared to 1;

i.e., (ux/ x) < < 1. . (Large fractional errors are very unusual in physics. laboratories.) All

expressions that follow are based on this assumption.

Consider an arbitrary function z(x).

analytical geometry, we obtain,

oz = d z ox 0 =d z 0 .
Ox dx Z dx >.

Now, suppose that z(x) of the form,

We wish to know Uz. Applying the concept learned in the

z=axn then

Manipulating further,

oz=naxn-1ox(;)=zn(;)
ox
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This specially simple relationship between two relative errors exists only for this particular
functional form. It is useful nevertheless, because so many error tracking operations in

practice involve this type of functions (e.g. unit conversions). For other functional forms, one

must go back to the general expression listed above.

Suppose you have a tiny postal scale that only weighs to 1 ounce, and you want to
mail a ream (500 sheets) of paper. How much does it weigh? You cleverly take a
packet of five sheets of paper, put them together, and find the total weight to be
1 ounce. Under the assumption that all sheets of paper have the same weight, the
weight of a ream is 100 oz, or 6 lb and 4 oz. You put on enough postage for a
7-lb package. Will your package make it? That depends on the error of your
estimate of the weight. Suppose your weighing had an error of 0.1 oz. Then the
ream would have an error of 100 x 0.1 oz = 10 oz. At most, rour package would
weight 6 lb 14 oz, and you are safe. In this example you mu tiplied your measured
quantity and its error by 100. You can readily imagine the reverse, in which you
have only a large set of scales, weigh a ream of paper in pounds, and find the
weight of a five-sheet letter by division. In this case, .you would divide both
your result and error by 100. To summarize: When a measured quantity is .
multiplied (divided) by a constant, the absolute error is likewise multiplied
(divided) by the same constant.

Propagation of Errors. More Than One Measurement. When we started the discussion of

error propagation, we considered an example of calculating the area of a square. In that

example, we took one single measurement, and squared the data. Because 8's were

completely correlated, the error doubled. What happens if we add, subtract, multiply or

divide two independently measured quantities? The answer is not simple. But it is clear that

those 8's are not correlated. In fact there is a probability that they may partially cancel each

other out. You will learn in Physics 353 the problem of "drunkard's walk" which involves the

treatment of uncorrelated errors. We will borrow the result from that treatment.

When two or more independent measurements are combined, there are four simple rules to

remember. They are;

Rule #1: When two measurements are combined by addition or subtraction, use

absolute enurs, and use the recipe - Given z=x~y with x, ax' y, Gy' then

az =Ja; + a; (A cocktail party phrase.. In addition of measured quantities, absolute
errors are added in quadrature.)
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Rule #2: When two measurements are combined by multiplication or divisio~ use

relative errors, and use the recipe -Given z=axy or z=axj y, then

; =~ (;-r +( ;- r (..In a product of measured quantities, relative errors add in
quadrature.)

Rule #3: Keep two most significant digits as errors are propagated. For the final

answ~ keep only the most significant digit in the absolute error.

Rule #4: The-factor-of-two-rule. Remember that errorsusually aren't more precise than

:t 50%; one significantfigure is all that you can expect inyour error estimate. Given

this, we will now see that, if one sourceof error,A, is appreciablylargerthan another

source of error,B, then B has a negligibleeffect on the final error. SupposeA is equal to

a 2% error and B is half as large. Then the final error estimate is

% error =v'(12 +22) =2.24 %=2 %.

To one significant figure, the total error is described completely by the larger source A.

The conclusion is quite general: a successful error analysis finds the largest source of

error, whether it be systematic or random, rather than attempting to add the effects of

many small errors.

Propagation of Ermrs: Final Generalization. If the four propagation rules, listed above,

become obscure in a very complicated error tracking situation, you may be forced to evaluate

the following general formula:

If z=z (x,y) (
OZ

)
2 2

(
OZ

)
2 2

then oz=\1 ox °x+ oy Oy

When there are more than two measured quantities, you can extend this expressions by

adding more terms under the square-root sign.

Example: Error Propagation
A particle slides down an inclined plane starting from rest. We will predict the
distance traveled by the particle in two seconds, using measured quantities. From
our physics knowledge, we know the distance to be
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We measured ~ = 0.20(1), a = 0.52(2) radians, t = 2.0(1) and g = 980.5(2) cm /S2.
Solution using four rules listed. First, the predicted distance. My calculator
a~sp~ays o~4.u~~~o~1 cm. Le~ us keep one more digit than what the rules about the
significantfigures say; 6.34 x 102 cm. To understand the propagation of errors,
let us firstcalculate% errors. They are: 5% for ~, 4% for a, 5% for t, and
0.02% for g. Clearly, we need not worry about the error in g. (Rule #4)

Error in sin ex=a.cosex=0.017

Error in eosex =a. sinex =0. 01""1.1%
Error in JJcosex=5% (from II) 0.0087
Error in paran =0.017 5.3%

Error in t2 =0 .1.2'2 =10%

Total error =v'102+5.32=11% 72

Thus, the final answer is

L=(6.3:f:O.7)x102 em

You may try to use the the general formula;

(

OL
)

2 .

ot =[g(sJ.nex -Jlcos ex)t]2

(

OL

)

2

[

t2

]

2

011 =- g2 cosex

(~;r=[ gg2 (Cosex+IISinex)r

Complete several lines of algebra and obtain the final answer.
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