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1 Temperature

Temperature is a measure of the tendency of a body to spontaneously transfer
energy to its surroundings. For instance if you put a body with a higher
temperature in “thermal contact” with a body with a lower temperature,
the hot body will transfer energy to the cold body. The temperature of the
hot body will decrease and the temperature of the cold body will increase.
This process slows down as the temperatures of the two bodies become the
same.

For a quantitative measure of temperature, we can use an ideal gas, which
is a pretty good approximation for a real gas as long as the number of
molecules per unit volume in the gas is small enough so that there is lots
of space between the molecules and as long as the gas is hot enough so that
classical mechanics rather than quantum mechanics applies. For N molecules
of an ideal gas with pressure P , V and temperature T we have

PV = NkT. (1)

Here k is the Boltzmann constant, which effectively converts energy units
into temperature units. Its value is k = 1.4 × 10−23 J/K. Here K is the
abbreviation for kelvins, the standard SI unit for temperature. On the kelvin
scale, water freezes at 273 K and boils at 373 K.

What is the status of this? First of all, it says that at constant tem-
perature, P is proportional to 1/V . We don’t need to have a temperature
scale defined to establish this by experiment. Second, since we have not yet
defined a temperature scale, we can use this as the definition of T . One can
call this the “ideal gas temperature scale.” Later, we will see that there is
a more general definition that gives the same result. For now, we go on in
the next section to find that there is an interesting relation between T , thus
defined, and how fast the molecules in a gas are moving.
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2 Microscopic model for an ideal gas

Let’s suppose that we have N molecules of gas in a box of volume V . Let
each molecule have mass m. The atoms don’t exert any forces on each other
except when they are very close together, and the average separation between
molecules is much bigger than the distance at which the molecules exert forces
on each other.

We consider a small piece of container wall of area ∆A oriented perpen-
dicular to the x axis, with the gas in the region x < 0. We will keep the model
simple by supposing that the walls of the container are perfectly smooth on
a microscopic scale. Then, when a molecule with momentum m�v hits the
wall, it bounces off with momentum m�v′, with mv′

y = mvy and mv′
z = mvz

but mv′
x = −mvx. Thus it transfers a tiny bit of momentum 2mvx x̂ to the

wall.
Now let’s suppose that we have N/2 molecules with the same velocity �v

and N/2 molecules with the same vy and vz but with vx reversed. (These are
the ones that have bounced off the wall and are heading away.) Let these
molecules uniformly fill the container. Then the number of molecules that hit
our little area of wall in time ∆t is vx∆t ∆A (N/2)/V . The total momentum
that they deliver is this number of molecules times the momentum delivered
by each:

2m v2
x ∆t ∆A (N/2)/V. (2)

Since momentum transfer per unit time is force, the force on the wall is

m v2
x ∆A N/V. (3)

Since force per unit area is pressure, the pressure on the wall is

m v2
x N/V. (4)

Now it wasn’t very realistic to suppose that we have only molecules with
a fixed velocity �v, so lets suppose that we have N1 molecules with velocity
�v1, N2 molecules with velocity �v2, and in general Nj momentum �vj. Each
kind of molecule exerts its own pressure, so that the total pressure is

P =
∑
j

m v2
j,x Nj/V. (5)

The total number of molecules is N =
∑

Nj. Thus

PV = N

∑
j Nj m v2

j,x∑
j Nj

. (6)
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Now in general if we have Nj things of kind j and each thing has some
quantity Qj then we define the average Q of the things as

〈Q〉 =

∑
j NjQj∑

j Nj

. (7)

With this notation,
PV = N 〈mv2

x〉. (8)

We now assume that our gas is isotropic, so that

〈mv2
x〉 = 〈mv2

y〉 = 〈mv2
z〉. (9)

Then

〈mv2
x〉 =

1

3

(
〈mv2

x〉 + 〈mv2
y〉 + 〈mv2

z〉
)
. (10)

or

〈mv2
x〉 =

1

3
〈m�v 2〉. (11)

Thus

PV =
1

3
N 〈m�v 2〉. (12)

We recognize that 1
2
m�v 2 is kinetic energy, so we write this result as

PV =
2

3
N 〈1

2
m�v 2〉. (13)

Now recall that experiment gives the ideal gas law

PV = NkT (14)

if we adopt the ideal gas definition of T . Thus we find out what T is:

3

2
kT = 〈1

2
m�v 2〉. (15)

Notice that this says that the velocity of the molecules would go to zero
if we lowered the temperature to zero. But that isn’t right. We used classical
mechanics to make the model, but it would become necessary to use quantum
mechanics. Since we know about quantum mechanics, we can see what the
problem is. Let’s suppose that each molecule has to live in a little box of
length L such that NL3 = V . That is, L = [V/N ]1/3. Then the lowest energy
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the molecule in this box could have is h̄2π2/(2mL2). We will certainly need to
use quantum mechanics instead of classical mechanics if the average kinetic
energy is comparable to this minimum energy. Thus our classical model
applies if

3

2
kT � h̄2π2

2mL2
. (16)

Inserting our formula for L, the requirement is

kT � h̄2π2

3 m

(
N

V

)2/3

. (17)

We can see what this means numerically by writing is as

kT � h̄2π2

3 m

(
P

kT

)2/3

. (18)

This is equivalent to

(kT )3 �
(

h̄2π2

3 m

)3 (
P

kT

)2

. (19)

or

(kT )5 �
(

h̄2π2

3 m

)3

P 2, (20)

or, finally,

T � 1

k

(
h̄2π2

3 m

)3/5

P 2/5, (21)

Let’s put P = 1 × 105 N/m2, which is approximately normal air pressure,
into this along with m = 28× 1.67× 10−27 kg (the mass of an N2 molecule),
h̄ = 1.055×10−34 J s and k = 1.381×10−23 J/K. You have enough problems
to do, so I tried this. I got 0.4 K for the temperature at which things must
go wrong.

There is another limitation on T at a given pressure in order for the ieal
gas law to apply. Let d be the size of a molecule. Then the distance L
between molecules has to be much bigger than d. That is, we need

V

N
� d3. (22)
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Using
V

N
=

kT

P
, (23)

the required condition is

T � P

k
d3. (24)

If we use our previous numbers together with the (rough) estimate d =
2 × 10−10 m, one obtains 0.06 K for this temperature at which the ideal gas
law must go wrong.

At normal air pressure, nitrogen turns to a liquid at about 77 K, so the
� sign in the arguments above really means that T has to be much bigger
the ciritical values that we calculated.

3 Getting to equilibrium

Imagine a system made of N harmonic oscillators, each with natural angular
frequency ω0. We have studied oscillators in classical mechanics, but here
we want to use quantum mechanics. In quantum theory, the energy of a
harmonic oscillator is quantized. The only allowed values are

Ej = (j + 1
2
)h̄ω0 (25)

where j can be 0, 1, 2 . . . . We have lots of oscillators. Let the state of the
nth oscillator be labelled by jn, so that the total energy of the system is

E =
N∑

n=1

(jn + 1
2
) h̄ω0 = h̄ω0

N∑
n=1

jn + 1
2
Nh̄ω0. (26)

We can write this as
E = qh̄ω0 + 1

2
Nh̄ω0 (27)

where

q =
N∑

n=1

jn. (28)

Now we can ask, how many are the ways for our N oscillators to have J
energy units above the ground state, as given in Eq. (??). In purely mathe-
matical terms, how many ways are there to choose N non-negative integers
jn such that they sum to q? The result, elegantly proved in Schroeder, is

Ω(N, q) =
(q + N − 1)!

q!(N − 1)!
. (29)
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Now suppose that we have two collections of oscillators, one with NA

oscillators and one with NB oscillators. The first set of oscillators has qA

energy units above the ground state, while the second has qB energy units.
We imagine that the two collections are weakly coupled, so that qA and qB

can change as long as qA + qB remains the same. Let us denote

qA + qB

NA + NB

= r. (30)

Let’s suppose that we measure qA and qB to see what happens. We will
call the state specified by {qA, qB} a macrostate. We call the exact state of
all the oscillators a microstate. Then there are lots of microstates for each
macrostate.

We assume that in an isolated system in thermal equilibrium, all
accessible microstates are equally probable. In this situation, this
assumption amounts to saying that all the microstates corresponding to a
given macrostate {qA, qB} are equally likely.

As noted above there are lots of microstates for each macrostate. In fact,
the number is

Ω(NA, qA)Ω(NB, qB). (31)

To formulate this a little more precisely, let

qA = rNA + δq

qB = rNB − δq. (32)

This builds in the constraint that qA + qB is fixed by Eq. (??). Then the
macrostate is labelled by δq. The total number of microstates corresponding
to macrostate δq is

Ω(δq) = Ω(NA, rNA + δq) Ω(NB, rNB − δq). (33)

The probability that the system is in macrostate δq is just this number Ω(δq)
divided by the total number of available microstates,

Ω(δq)/(
∑
δq′

Ω(δq′)). (34)

Let’s now see what δq is most likely. We look for the value of δq that
makes log Ω(δq) biggest. We assume that NA and NB are very large and use
the approximation

log n! = n log n − n + 1
2
log(2πn) + O(1/n). (35)
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Here O(1/n) indicates terms that go to zero at least as fast as 1/n as n → ∞.
This is called Stirling’s approximation.

Using this approximation, we have

log Ω(NA, rNA + δq) = (NA[1 + r] + δq − 1) log(NA[1 + r] + δq − 1)

−(NA[1 + r] + δq − 1)

+1
2
log(2π[NA[1 + r] + δq − 1])

−[NAr + δq] log(NAr + δq)

+[NAr + δq] − 1
2
log(2π[NAr + δq])

−(NA − 1) log(NA − 1)

+(NA − 1) − 1
2
log(2π[NA − 1])

+O(1/NA). (36)

When we write O(1/NA) here, we mean things that go to zero as NA → ∞
with r fixed and δq/NA fixed (but possibly δq/NA small or zero). Some of
the terms cancel, leaving

log Ω(NA, rNA + δq) = (NA[1 + r] + δq − 1) log(NA[1 + r] + δq − 1)

+1
2
log(2π[NA[1 + r] + δq − 1])

−[NAr + δq] log(NAr + δq)

−1
2
log(2π[NAr + δq])

−(NA − 1) log(NA − 1)

−1
2
log(2π[NA − 1])

+O(1/NA). (37)

To find out where log Ω(NA, rNA + δq) + log Ω(NB, rNB − δq) is maximum,
we want to differentiate with respect to δq. We get

∂ log Ω(NA, rNA + δq)

∂δq
= log(NA[1 + r] + δq − 1) + 1

+
1

2

1

NA[1 + r] + δq − 1

− log(NAr + δq) − 1

−1

2

1

NAr + δq

+O(1/NA). (38)
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Two of the terms here are of order 1/NA, so we drop them. There is a +1
that cancels against a −1. Finally, log(NA[1 + r] + δq − 1) is log(NA[1 + r] +
δq) + O(1/NA), so we can throw away the +1 inside the logarithm. Thus

∂ log Ω(NA, rNA + δq)

∂δq
= log(NA[1 + r] + δq)

− log(NAr + δq) + O(1/NA), (39)

or

∂ log Ω(NA, rNA + δq)

∂δq
= log

(
[1 + r] + δq/NA

r + δq/NA

)
+ O(1/NA). (40)

This has simplified a lot! For the B oscillators we have

∂ log Ω(NB, rNB − δq)

∂δq
= − log

(
[1 + r] − δq/NB

r − δq/NB

)
+ O(1/NB). (41)

Thus

∂ log Ω(δq)

∂δq
= log

(
[1 + r] + δq/NA

r + δq/NA

)
− log

(
[1 + r] − δq/NB

r − δq/NB

)

+O(1/NA, 1/NB). (42)

Where is log Ω(δq) maximum? Evidently it is where δq = 0. (We will
check that it is a maximum and not a minimum below.) That is, the maxi-
mum is at qA = rNA and qB = rNB. Thus the most likely situation is that
the oscillators in group A have the same amount of energy per oscillator as
the oscillators in group B. If, say, the oscillators of group A have more energy
per oscillator than the oscillators of group B before we put the two groups
together, it is not likely that they will stay that way. The most likely thing
is that the oscillators of group A will lose energy and those of group B will
gain energy until the energy per oscillator in each group is the same. We say
that group A cools down, while group B heats up.

Now lets look at log Ω(δq) in more detail. For small δq (small compared
to NA or NB) we can write

log Ω(δq) ≈ log Ω(0) − 1
2
C(δq)2 (43)

where

C = −
[
∂2 log Ω(δq)

∂δq2

]
δq=0

. (44)
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We can compute C:

C = − 1

NA

[
1

1 + r
− 1

r

]
− 1

NB

[
1

1 + r
− 1

r

]

=
NA + NB

NANB

1

r(1 + r)
. (45)

First of all, we verify that C > 0, so that log(Ω) has a maximum and not
a minimum at δq = 0. Second, we get an approximation for Ω(δq) that is
quite instructive

Ω(δq) ≈ Ω(0) exp(−1
2
C(δq)2). (46)

Macrostates with δq much larger than 1/
√

C are quite unlikely. What our
calculation shows is that C is proportional to N = NA + NB (assuming
that NA/NB is of order 1, not very big or very small.) Thus the typical
fluctuations in δq are of order

√
N and the typical fluctuations in the energy

per oscillator, δq/N , are of order 1/
√

N . Now if N is something like 1023,
then

√
N is still a very big number. Thus there are fluctuations in the energy

per oscillator – sometimes the oscillators of group A have a little more energy,
sometime the oscillators of group B have a little more energy. However the
fluctuations in the energy per oscillator are very small for a big system.

4 Counting states for the ideal gas

We have seen how to count the multiplicity of states having a given energy
in the case of a collection of two state spins in a magnetic field and for a
collection of independent harmonic oscillators. Here we try the ideal gas.

Suppose that we have N structureless gas molecules in a cubic box of
length L, volume V = L3. What are the possible states? Recall the particle
in a one dimensional box. The particle can have a wave function proportional
to sin(πnx/L), so that the wave function vanishes at x = 0 and at x =
L. Here n can be any positive integer. The particle has momentum p =
h̄πn/L = n h/(2L), or more properly, it has momentum either plus or minus
this amount, since the standing wave is a linear combination of a left-moving
and a right-moving wave. The molecule’s energy is

E =
p2

2m
. (47)
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Now our molecules can move in a three dimensional box. The generalization
of the states is simple:

E =
p2

1 + p2
2 + p2

3

2m
(48)

where

pj =
njh

2L
(49)

with positive integers {n1, n2, n3}. Now, we have N molecules. Let the Jth
molecule have momentum

pJ,j =
nJ,jh

2L
. (50)

All of the nJ,j are positive integers. The total energy of the system is then

U =
1

2m

N∑
J=1

3∑
j=1

p2
J,j. (51)

Lets try to answer the question, “How many states of the gas are there
with energy between U and U + δU?” The answer is evidently

Ω =
∑
n1,1

∑
n1,2

∑
n1,3

· · ·
∑
nN,3

θ

⎛
⎝U <

1

2m

N∑
J=1

3∑
j=1

p2
J,j < U + δU

⎞
⎠ (52)

where θ(· · ·) is one when the condition indicated is true, zero when it is false.
Of course, if N is large, this is an “in principle” formula but is not of much
practical use. We can, however, approximate. Each sum is approximately an
integral, ∑

n

→ 2L

h

∫ ∞

0
dp =

L

h

∫ ∞

−∞
dp. (53)

The factor 2L is from the step size ∆n = (2L/h)∆p. Thus

Ω =
(

V

h3

)N ∫
dp1,1

∫
dp1,2

∫
dp1,3 · · ·

∫
dpN,3 θ

⎛
⎝U <

�P 2

2m
< U + δU

⎞
⎠ (54)

where

�P 2 ≡
N∑

J=1

3∑
j=1

p 2
J,j. (55)
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As the notation indicates, you are invited to think of �P as a vector in 3N
dimensions with components pJ,j Here I have replaced L3 by V . This is the

volume of a thin shell in �P space. The width of the shell is given by

2PδP

2m
= δU (56)

or
δP =

m

P
δU (57)

where P =
√

�P 2 and, on the shell, P =
√

2mU . With this notation,

Ω =
(

V

h3

)N ∫
dp1,1

∫
dp1,2

∫
dp1,3 · · ·

∫
dpN,3 θ

(√
2mU < P <

√
2mU + δP

)
.

(58)
The integral here is just δp times the surface area of a sphere in 3N dimen-
sions,

Ω =
(

V

h3

)N m δU

P
A(P, 3N) (59)

We certainly know that this area is proportional to P 3N−1,

A(P, 3N) = P 3N−1A(1, 3N). (60)

It is fairly easy to find the surface area of a unit sphere in 3N dimensions. I
skip the derivation and just state the result,

A(1, 3N) =
2π3N/2

(3N/2 − 1)!
. (61)

Thus

Ω =
(

V

h3

)N

m δU P 3N−2 2π3N/2

(3N/2 − 1)!
(62)

Lets restate this in terms of U , using P =
√

2mU :

Ω =
(

V

h3

)N

U3N/2 (2πm)3N/2

(3N/2 − 1)!

δU

U
. (63)

There is one more ingredient that we need. The new ingredient does not
affect the dependence on V or U , but it does affect how U depends on N . We
have assumed that if molecule 285 is on state α and molecule 862 is in state
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β, that’s a different state from the state of the gas with molecule 285 in state
β and molecule 862 in state α. If the molecules are all the same, this doesn’t
seem right, and the rules of quantum mechanics say it isn’t right. Instead,
states that differ by interchanging identical particles are physically the same
state. Thus we have overcounted, and we should divide by the number of
ways, N !, of interchanging the particles. Thus

Ω =
(

V

h3

)N

U3N/2 (2πm)3N/2

N !(3N/2 − 1)!

δU

U
. (64)

Later on in the course, we will talk about what happens if we have two kinds
of molecules, say O2 and N2. Then the N ! factors will make a difference.

Let’s take the logarithm of this, using Stirling’s approximation. We get

1

N
log Ω ≈ log

(
V

N

(
U

N

)3/2 (
4πm

3h2

)3/2
)

+
5

2
, (65)

where we have thrown away terms on the right hand side that vanish as
N → ∞. (There are terms in log Ω that either grow like log N or are constant
as N → ∞. After we divide by N to make (1/N) log Ω, these terms divided
by N vanish as N → ∞ so we have neglected them.)

5 Entropy

We have seen that Ω is important for statistical physics. For instance, sup-
pose we have a system A with energy UA and a system B with energy UB, and
we allow these systems to share energy. That is, UA and UB can change, keep-
ing UA +UB = Utot constant. The total multiplicity of states is ΩAΩB = Ωtot.
The most likely outcome is that UA and UB adjust themselves so that Ωtot is
maximized.

The statistical meaning of Ω is clear, but we have preferred to deal with
log Ω in our calculations. There are three reasons for this. First, log Ω is not
as huge as Ω. Second, in simple cases, we can use approximations to help
calculate log Ω. Third, log Ωtot = log ΩA + log ΩB, so log Ω is “additive” like
U .

We give a special name to log Ω, or rather to k times log Ω. We call this
quantity the entropy S:

S = k log Ω. (66)
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For our two systems that can share energy, then, we want to find how to
divide the total energy Utot into energies UA and UB in such a way that the
total entropy Stot = SA(UA) + SB(UB) is maximized.

To make this more concrete, let’s go back to our two Einstein solids. For
an Einstein solid with N oscillators and energy U above the lowest energy
state, we found

Ω =
[N + U/(h̄ω0)]!

[U/(h̄ω0)]!N !
(67)

where U/(h̄ω0) is what we called q. Applying Stirling’s approximation to
this, we get

S(U) ≈ Nk

⎧⎨
⎩log

(
1 +

U

Nh̄ω0

)
− U

Nh̄ω0

log

⎛
⎝ U

Nh̄ω0

1 + U
Nh̄ω0

⎞
⎠

⎫⎬
⎭ (68)

where terms in S/N that vanish as N → ∞ are neglected. Then simple
differentiation gives

dS(U)

dU
= − k

h̄ω0

log

⎛
⎝ U

Nh̄ω0

1 + U
Nh̄ω0

⎞
⎠ . (69)

If we have two systems that can share energy, then we want

dSA(UA)

dUA

+
dSB(Utot − UA)

dUA

= 0. (70)

or
dSA(UA)

dUA

=
dSB(UB)

dUB

. (71)

The solution is
UA

NA

=
UB

NB

, (72)

just as we found earlier.

Note that the particular result UA/NA = UB/NB is special for our very
simple system of oscillators. But Eq. (??) is very general. We could apply
it to two samples of the simple spin system that we studied. We could (and
will) apply it to two containers of ideal gas. We could apply it to the Einstein
solid oscillators interacting with an ideal gas, et cetera. We will look into all
of this next quarter.
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6 The Second Law of Thermodynamics

If you allow two systems to interact, the systems come to a macrostate that
corresponds to the most possible microstates of the combined system. This
maximizes the total entropy. That is,

Entropy gets bigger.

We will study the implications of this further next quarter. What we
would like to do is go over to the ocean and get some water, turn it into
hydrogen and oxygen using as an energy souce the thermal energy of the
ocean – just cooling down the ocean. Then we can sell the hydrogen to the
government to power cars. This will allow us to finance a class field trip to
Tahiti in May. Unfortunately, the law stated above prevents us from profiting
from this scheme.
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