Name______

PH353 – Foundations of Physics Midterm Exam I, May 8, 2006

This is a closed book exam. However, you may use one page of notes. <u>Please show your work.</u> If you have questions about a problem, do not hesitate to ask! Additional paper is available, but if you use the back side of a page, please makes a note on the front.

- (a) Find the work done.
- (b) Find the final temperature.
- (c) Find the heat added.
- (d) Calculate the entropy change of the gas. Is this a reversible process?
- (e) Calculate the overall efficiency of the process.

(a)
$$W = avla under graph = -P(v_2-v_1) = -(10 \text{ fm x } 1 \times 10^5 \frac{N}{m^2}) + (0.001 \text{ m}^3)$$

$$[\Delta V = 1 l = 0.001 \text{ m}^3] = -1000 \text{ J} \text{ (NEGATIVE, BECAUSE WOKK)}$$

$$15 \text{ DOWE ON WORLD)}$$

(c)
$$Q = \Delta U - W$$
 GET $\Delta U = \frac{3}{2}P(v_2 - v_1)$
 $= \frac{3}{2}(1000 T) = 1500 T$

a
$$\Delta S = \int \frac{dQ}{T} = \int \frac{dQ}{T} = C_p \ln \left(\frac{Tf}{Ti}\right)$$

FOR MONATIONIC GAS $C_v = \frac{3}{2}NK$, $C_p = \frac{5}{2}NK$

$$\Delta S = \frac{5}{2}Nk \ln 2$$

$$C_g + Nk \text{ from initial condutions} = \frac{10003}{2000}$$

$$egline E = \frac{170}{Q_{H}} = \frac{10005}{25005} = 0.4 (4670)$$

- 2. (50) A cube of ice at 0° C, weighing 30 g, is added to a perfectly insulated cup containing 250 g of tea initially at 90° C.
- (a) What is the final temperature?

As the system comes to equilibrium:

- (b) Find the change in total entropy of the system.
- (c) Estimate the change in the number of states available to the system (tea+ice).