
PH353, May 31, 2006 
Ising model of a magnetic solid in 1 and 2 dimensions: Monte Carlo estimation. 

 
In this lab we will use the Monte Carlo method to estimate the parameters (mean energy, heat 
capacity, magnetization and magnetic susceptibility) of a lattice of interacting dipoles. See the 
treatment from Koonin, Computational Physics for a complete description of the theoretical 
problem. A more limited treatment is found in Schroeder, Chapter 8. 
 
Method:  NxN lattices of spins are randomly generated according to the Boltzmann distribution. 
That is, the probability that an individual spin Si points up or down depends on the state of its 
neighbors Sj and the presence of a magnetic field B. The lattice is assumed to be in contact with a 
“heat bath” of temperature T. 
 
For an individual spin:  
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We don’t know Z and can’t calculate it. However, we can estimate it by generating a bunch of 
lattices Li. Each of these lattices has energy Ei and magnetization Mi so we can calculate average 
values <E> and <M> by just averaging these from the generated lattices. In addition we can 
calculate the heat capacity and the magnetic susceptibility from the variances of these quantities. 
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Here, we take k and µ to be equal to 1.0, so that only the ratios of J/T and/or B/T matter. The 
complete solution for an infinite lattice is given in Koonin, Computational Physics. The 
interesting feature of this model is that at low temperature, the lattice “freezes”, that is, it 
becomes a ferromagnet. The critical temperature Tc in the above units is 2.269. Near this 
temperature, CB and Χ peak. In fact, Χ is infinite at Tc for an infinite lattice, but in a finite lattice 
the singularity is removed. 
 
Several programs are available for generating lattices and many are available on line. A nice Java 
version is available at http://stp.clarku.edu/simulations/ising2d/
However, this implementation is too slow for serious work, because you have to generate a large 
number of lattices and average over them in order to get reasonable results. A version written in 
QBASIC is available on the course web page, including an executable that should run on any PC. 
It is about 100 times faster than the Java version. 
 
Instructions for Lab Assignment: 
 
Using any of the available programs, first run the simulation at the critical temperature 2.269, for 
a 32x32 lattice with no applied magnetic field B. Observe the behavior. There are large 
fluctuations in the magnetization in both directions (i.e. nearly all “up” spins or nearly all “down” 
spins). Application of even a small B field will cause the lattice to magnetize nearly completely in 
the favored direction. Below Tc, the behavior will be uninteresting and mostly spin-aligned, but 
above Tc, the size of the magnetic domains will be reduced substantially and the overall 
fluctuations will diminish. 
 

http://stp.clarku.edu/simulations/ising2d/


1. Turn off the spin-spin interaction by setting J=0 (the only useful values of J are -1, 0 and 
1). This models a lattice of non-interacting spins. For B=1 and various values of T, verify 
that you get the theoretical result for the mean energy <E> and magnetization <M> as 
derived in class (with µ=1 and k=1): 
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Make a plot of the results. 
 

2. Turn off B by setting B=0 and set J=1 (the spin-spin coupling). For lattice sizes of 8x8, 
16x16 and 32x32, calculate and make plots of  <E>, <M>, CB and X for temperatures in 
the range 2-10, paying close attention to the behavior near Tc = 2.269 (i.e. try 
temperatures 2.1,2.2,2.3,2.4 etc.). If your graphs of CB and X are not smooth curves, 
you are not averaging over a large enough sample of lattices! 

  
3. Question: how does the lattice size affect the singularity in X and the width of CB? 

 
4. Experiment with J=1 and several values of B to see the effect. 

 
 
5. Simulate an antiferromagnet by setting J=-1. What is its behavior? Does it have a critical 

temperature? What is the behavior of the heat capacity CB and the susceptibility X? 
 
 
Notes on using the QBASIC program ISING.BAS (or ISING.EXE).  
 

1. The program will ask for the number of “thermalization sweeps”. This is because the 
initial lattice is a randomize collection of spins, not equilibrated at the heat bath 
temperature T. 100 thermalization sweeps should be enough to equilibrate the lattice, but 
you might experiment. Otherwise, your averages might include a highly improbable 
configuration, especially if T is low. 

2. The program asks for number of passes and “sweeps per pass”. The average values <E>, 
<E2>, etc. are updated once each pass, but only after some number of thermalization 
sweeps so that the lattices tend not be be correlated with one another. You might try 1000 
passes and 10 sweeps per pass initially, but this may not be good enough to get accurate 
values near Tc! Experiment with larger numbers for both keeping in mind that the number 
of lattices generated is (number of passes)x(sweeps per pass) so the computer time will 
go up accordingly. 

3. The random number generator may be “seeded” differently to get a different series. Try 
seeds of 1, 3, 5, etc. to see if the averages change. If they do, you aren’t averaging over 
enough samples! 


