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1 Wave equation for waves on a string

We consider a string with tension T and mass per unit length µ. The string
is stretched along the z axis. The height of the string at position z at time
t is denoted ψ(t, z). We assume that |∂ψ/∂z| � 1.

We can find the equation that ψ obeys by using F = ma. Consider a
small piece of string between z and z + ∆z. The transverse force on the left
end of the string is

FL = −T
∂ψ(t, z)

∂z
. (1)

(This is −T tan θ. Actually, the force is −T sin θ. However, we are assuming
that |θ| � 1 so that sin θ ≈ tan θ. In addition, the string has been stretched
by a factor 1/ cos θ, so its tension should have increased. However cos θ ≈ 1,
so we neglect this effect.) The transverse force on the right end of the string
is

FR = +T
∂ψ(t, z + ∆z)

∂z
. (2)

Thus the net transverse force on the piece of string is

T

[
∂ψ(t, z + ∆z)

∂z
− ∂ψ(t, z)

∂z

]
∼ T

∂2ψ(t, z)

∂z2
∆z. (3)

we equate this to the mass µ∆z of the piece of string times its acceleration:

µ∆z
∂2ψ(t, z)

∂t2
= T

∂2ψ(t, z)

∂z2
∆z. (4)

We divide by ∆z to obtain

µ
∂2ψ(t, z)

∂t2
− T

∂2ψ(t, z)

∂z2
= 0. (5)

If we set

c =

√
T

µ
, (6)

1



then we can rewrite the equation of motion[
∂2

∂t2
− c2 ∂2

∂z2

]
ψ(t, z) = 0. (7)

This is the wave equation.

Problem 1.1 The speed of waves on a certain string is 2 m/s. Another string
has a mass per unit length that is 4 times as great as the first string and a
tension that is 2 times as great . What is the speed of waves on the second
string.

Problem 1.2 Show that T/µ has the right units to be the square of a speed.

2 Solution of the wave equation

It is easy to solve Eq. (7). Consider

ψ(t, z) = fR(t − z/c). (8)

Here fR can be any smooth function we like. If

t − z/c = −z0/c (9)

denotes the argument of f at which f(t−z/c) has some distinct feature, then
the location of this feature along the z axis at time t is

z = z0 + ct. (10)

Thus the feature moves to the right with speed c. Now if we differentiate ψ
using the chain rule, we have

∂ψ

∂t
= f ′

R(t − z/c)

∂2ψ

∂t2
= f ′′

R(t − z/c)

∂ψ

∂z
= −1

c
f ′′

R(t − z/c)

∂2ψ

∂z2
=

1

c2
f ′′

R(t − z/c). (11)
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Thus
∂2ψ

∂z2
=

1

c2

∂2ψ

∂t2
, (12)

which is equivalent to Eq. (7).
Now consider

ψ(t, z) = fL(t + z/c). (13)

Here fL can be any smooth function we like. If

t + z/c = z0/c (14)

denotes the argument of f at which f(t−z/c) has some distinct feature, then
the location of this feature along the z axis at time t is

z = z0 − ct. (15)

Thus the feature moves to the left with speed c. An analogous argument
shows that this version of ψ also obeys the wave equation.

Since the wave equation is linear, the sum of two solutions is also a
solution. Thus

ψ(t, z) = fR(t − z/c) + fL(t + z/c) (16)

solves the wave equation. In fact, this is the most general solution: any
solution of Eq. (7) can be written in this form. (This is proved in a course
on differential equations.)

We see that disturbances move along the string with speed c – either to
the left or to the right. One consequence is that if ψ(t, z) is zero at time for
t < 0 in the range z < zL and in the range z > zR then ψ(t, z) for t > 0
will be zero for z < zL − ct and for z > zR + ct. That is, ψ is zero until the
disturbance gets there and the disturbance can’t move faster than c.

A very important special case of this solution is

ψ(t, z) = A cos(ωt − kz). (17)

Here k can be either positive or negative but must satisfy

|k| =
ω

c
(18)

so that
ψ(t, z) = A cos(ω[t ± z/c]). (19)
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This solution represents sinusoidal waves moving either to the left or to the
right with speed c. Each point on the string vibrates with period 2π/ω. The
wavelength is 2π/|k|.

Problem 2.1 Calculate the frequency, the wavelength and the wave speed of
a wave given by

ψ = (0.1 cm) cos[(8 s−1) t + (4 m−1) x]. (20)

Problem 2.2 The figure below shows a “photograph” of a string carrying a
travelling wave moving from left to right. For each of the points marked, state
whether the sting was moving upwards or downwards when the photograph
was taken. Was point A or point B moving faster?

Problem 2.3 A certain long string has a linear density of µ = 0.1 kg/m and a
tension T = 40 N. A pulse is generated on the string by moving the left end
up at a constant speed of v1 = 10 m/s for a time τ1 = 5 ms, then holding
the end at rest for a time τ2 = 5 ms and finally moving the end down at a
constant speed of v3 = 10 m/s for a time τ3 = 5 ms, thus returning the end
to its original position. Draw a diagram showing the shape of the resulting
right moving pulse at one particular instant. Draw another diagram showing
a graph of the vertical velocity of points along the string at this instant.

3 Reflection and transmission

Consider two strings that are joined at z = 0. String 1 with tension T1 and
mass per unit length µ1 is in the region z < 0. String 2 with tension T2 and
mass per unit length µ2 is in the region z > 0. The most realistic case is
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T1 = T2, but we could have unequal tensions if the strings are tied to a ring
at z = 0 that is free to slide along a vertical rod.

Suppose that a disturbance comes from the left along string 1 and is
partially reflected at the boundary, so that

ψ1(t, z) = f(t − z/c1) + CRf(t + z/c1). (21)

Here f(t − z/c1) is the incident disturbance, CRf(t + z/c1) is the reflected

disturbance, and c1 =
√

T1/µ1 is the speed of waves in string 1. Some of the
disturbance should be transmitted into string 2, so that

ψ2(t, z) = CT f(t − z/c2). (22)

Here c2 =
√

T2/µ2 is the speed of the transmitted disturbance. We have
guessed at the form of the reflected and transmitted disturbances. We will
see that our guess works as long as CR and CT have certain values.

The strings are joined at z = 0, so

ψ1(t, 0) = ψ2(t, 0). (23)

That is
f(t) + CRf(t) = CT f(t). (24)

Thus
1 + CR = CT . (25)

We need one more relation. The transverse force of the string 1 on string
2 is

F1 = −T1
∂ψ1(t, z)

∂z

= −T1

{
∂

∂z
[f(t − z/c1) + CRf(t + z/c1)]

}
z=0

= −T1

[
−1

c
f ′(t) +

1

c
CRf ′(t)

]

=
T1

c1

[
1 − CR

]
f ′(t)

= Z1

[
1 − CR

]
f ′(t), (26)

where
Z1 =

√
µ1T1 (27)
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is the impedance of string 1. The transverse force of string 2 on string 1 is

F2 = +T2
∂ψ2(t, z)

∂z

= T2

{
∂

∂z
CT f(t − z/c2)

}
z=0

= −T2

c2

CT f ′(t)

= −Z2CT f ′(t), (28)

where
Z2 =

√
µ2T2 (29)

is the impedance of string 2. These forces must be equal and opposite, so

Z1

[
1 − CR

]
f ′(t) = Z2CT f ′(t). (30)

Thus

Z1

[
1 − CR

]
= Z2CT . (31)

We have found two equations for the two unknowns CR and CT :

1 + CR = CT

Z1

[
1 − CR

]
= Z2CT . (32)

The solution is

CR =
Z1 − Z2

Z1 + Z2

CT =
2Z1

Z1 + Z2

. (33)

We see that there is no reflected wave and CT = 1 if the impedances
match. In some applications of transmission of waves across a boundary, this
is a good thing.

In general there is a reflected wave. The reflection coefficient CR is pos-
itive if Z1 > Z2 and negative if Z1 < Z2. There are two important special
cases. First, suppose that string 2 is infinitely massive – for instance, you
just attach string 1 to a wall. Then Z2 = ∞ and CR = −1. The reflected
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wave is the same size as the incident wave, but it is upside down. Second,
suppose that string 2 is infinitely light. Then Z2 = 0 and CR = 1. The
reflected wave is the same size as the incident wave, and it is right side up.

Problem 3.1 A certain string stretched along the z axis has a linear density
of µL = 0.1 kg/m to the left of z = 0 and a linear density of µR = 0.2 kg/m
to the right of z = 0. The string is stretched to a tension T = 40 N. A
right moving pulse with the shape indicated in the figure is approaching the
junction between the parts with different densities. I have made the drawing
with the vertical scale exaggerated by a factor ten to make it easier to see.
The pulse is 1 mm high and 1 cm long. The thin horizontal line is just the z
axis, drawn to guide the eye. Draw what happens to the pulse at an instant
after the pulse has come to the junction. The situation is a little complicated
while the pulse is in the process of arriving at the junction, so make your
drawing for a later time, when the situation is simple. Label distances on
your drawing to make it quantitative.

Problem 3.2 A stretched string has a mass per unit length µ and a tension T .
At its right end, at z = L, the string is tied to a massless ring that is free to
slide up and down on a frictionless rod. Thus the ring provides zero vertical
force, but it provides a force to the right equal to the string tension T . Now
we add a “damper” attached to the right end of the string that provides a
vertical force on the right end of the string equal to

Fy = −γ
∂ψ(t, L)

∂t
. (34)

If a right moving wave comes along the string, when the wave comes to the
end it will in general create a left-moving reflecting wave. Thus the total
wave is

ψ(t, z) = f(t − z/c) + CR f(t + z/c − 2L/c). (35)

Find the reflection coefficient CR in terms of µ, T , and γ. What value of γ
will cause CR to vanish?
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Note where L goes in the reflected wave. The “−2L/c” term is there so
that the two functions match at z = L: f(t− z/c) becomes f(t−L/c) while
f(t + z/c − 2L/c) becomes f(t + L/c − 2L/c) = f(t − L/c). We have taken
L = 0 so we have not seen this term before in these notes.

Problem 3.3 The mystery Pulse. A certain very long string stretched along
the z axis has a constant tension but a mass per unit length that is different
on the left hand part than in its right hand part. Part of the string is shown
below. The boundary where the density changes is at the dashed line. In
the past, the displacement of the string was zero except for a more-or-less
rectangular pulse travelling from left to right. When this pulse arrived at
the boundary, a reflected pulse moving to the left and a transmitted pulse
travelling to the right emerged. A short time afterward, a photograph of the
string was taken. The figure below shows the photograph. The pulse on the
left, of height 2 units and length 2 units is the reflected pulse. The pulse
on the right, of height −4 units and length 1 unit, is the transmitted pulse.
Describe the original pulse, giving its height and width and saying whether
its height was positive or negative.

4 Sound waves in a solid

Consider a wave in some solid material. Our material is isotropic: it has no
preferred direction. (Crystalline materials have preferred directions and are
a little more complicated to analyze.) Our material obeys “Hooke’s Law”: it
resists being squeezed or bent with a force that is proportional to how much
it is squeezed or bent. We will formulate the force law more precisely below.
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In the kind of wave that we consider, the material moves. Let {x1, x2, x3}
be the coordinates in space and t be the time. Imagine that we put labels on
points in our material. Each point is labelled by three numbers {R1, R2, R3}.
The components can be denoted as Ra with a = 1, 2, 3. The label Ra at
a particular point �x at a particular time t is denoted by Ra(t, �x). If the
material is just sitting there, without any disturbance propagating through
it and without being squeezed, we can choose the labels so that

Ra(t, �x) = xa. (36)

However, as soon as a disturbance comes along, Ra(t, �x) will be a non-trivial
function of �x and t.

This is the start of how to set up continuum mechanics. [See my book
Classical Field Theory.] However, we want to deal with just the simple case
of small disturbances. Thus we suppose that Ra(t, �x)−xa is small. We define

ψa(t, �x) = xa − Ra(t, �x). (37)

Thus ψa(t, �x) gives a description of the disturbance. We are concerned with
cases in which ψa is small. As an example, if at some particular t and �x,
ψ1(t, �x) = 0, ψ2(t, �x) = 0, and ψ3(t, �x) = 1.73 µm, then the material at �x
and t has moved 1.73 µm in the z direction.

Let’s simplify some more by considering a plane wave that moves in the
z direction. That is, we suppose that ψa(t, �x) does not depend on x1 or x2,
but it does depend on x3 = z. We can also keep things simple by considering
a sinusoidal wave:

ψa(t, �x) = Aa cos(ωt − kz). (38)

The wave is moving in the z direction and the atoms are vibrating with
amplitude Aa. The twist is that Aa has three components – it is a vector.

Longitudinal waves. Suppose that �A points in the z direction: A1 =
A2 = 0, but A3 is not zero. To see what our wave will do, we need to
write “F = ma.” We consider a slab of material of thickness ∆z and cross
sectional area A. The mass of the slab is ρA∆z where ρ is the density of the
substance. The z component of the force on the left hand side of the slab,
at coordinate z is proportional to the area A. The proportionality constant
is something known as T33. (That is, this is the definition of T33, which is
analogous to pressure.) Thus the force is AT33(t, z). Similarly, the force on
the right hand side of the slab is −AT33(t, z + ∆z). Thus the net force on
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the slab is

F3 = −A ∂T33(t, z)

∂z
∆z. (39)

Setting this equal to ma, we have

ρA∆z
∂2ψ3(t, z)

∂t2
= −A ∂T33(t, z)

∂z
∆z, (40)

or, dividing by A and δz,

ρ
∂2ψ3(t, z)

∂t2
= −∂T33(t, z)

∂z
. (41)

Now we need to know something about T33. We will make a model that
the material resists being squeezed or stretched. Consider T33 at z = 0. If
∂ψ3/∂z = 0 there is no internal force: ∂ψ3/∂z = 0 means that near z = 0
every atom has been moved the same amount, so that the material has moved
a little from where it originally was, but has not been squeezed or stretched.
Now suppose that the atoms to the left have been moved to the left and the
atoms to the right have been moved to the right, so that ∂ψ3/∂z > 0. Then
the material has been stretched. The material to the left of z = 0 should
now be pulling the material to the right of z = 0 to the left: T33 < 0. On the
other hand, suppose that the atoms to the left have been moved to the right
and the atoms to the right have been moved to the left, so that ∂ψ3/∂z < 0.
Then the material has been squeezed. The material to the left of z = 0
should now be pushing the material to the right of z = 0 to the left: T33 > 0.
Thus we propose

T33 = −CL
∂ψ3

∂z
. (42)

Here CL is a coefficient characteristic of the material. If the material is stiff,
CL is big. If the material is squishy, CL is small.

Let’s put this into our F = ma equation.

ρ
∂2ψ3(t, z)

∂t2
= − ∂

∂z

(
−CL

∂ψ3

∂z

)
. (43)

That is

ρ
∂2ψ3(t, z)

∂t2
− CL

∂2ψ3

∂2z
= 0. (44)
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If we divide through by ρ, we get our wave equation in the standard form

∂2ψ3(t, z)

∂t2
− c2 ∂2ψ3

∂2z
= 0, (45)

where

c =

√
CL

ρ
. (46)

Transverse waves. Suppose that �A points in the x direction: A2 = A3 = 0,
but A1 is not zero. To see what our wave will do, we need to write “F = ma.”
We consider a slab of material of thickness ∆z and cross sectional area A.
The mass of the slab is ρA∆z where ρ is the density of the substance. The
1 component of the force on the left hand side of the slab, at coordinate z is
proportional to the area A. The proportionality constant is something known
as T13. (That is, this is the definition of T13, which is sort of a transverse
pressure.) Thus the force is AT13(t, z). Similarly, the force on the right hand
side of the slab is −AT13(t, z + ∆z). Thus the net force on the slab is

F1 = −A ∂T13(t, z)

∂z
∆z. (47)

Setting this equal to ma, we have

ρA∆z
∂2ψ1(t, z)

∂t2
= −A ∂T13(t, z)

∂z
∆z. (48)

or, dividing by A and δz,

ρ
∂2ψ1(t, z)

∂t2
= −∂T13(t, z)

∂z
. (49)

Now we need to know something about T13. We will make a model that
the material resists being sheared. Consider T13 at z = 0. If ∂ψ1/∂z = 0
there is no internal force: ∂ψ1/∂z = 0 means that near z = 0 every atom has
been moved the same amount, so that the material has moved a little from
where it originally was, but has not been sheared. Now suppose that the
atoms to the left have been moved to down and the atoms to the right have
been moved up, so that ∂ψ1/∂z > 0. Then the material has been sheared.
The material to the left of z = 0 should now be pulling the material to the
right of z = 0 to the down: T13 < 0. On the other hand, suppose that the
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atoms to the left have been moved to the up and the atoms to the right have
been moved to the down, so that ∂ψ1/∂z < 0. Then the material has been
sheared in the other direction. The material to the left of z = 0 should now
be pushing the material to the right of z = 0 up: T13 > 0. Thus we propose

T13 = −CT
∂ψ1

∂z
. (50)

Here CT is a coefficient characteristic of the material. If the material is stiff,
CT is big. If the material is easy to bend, CT is small.

Let’s put this into our F = ma equation.

ρ
∂2ψ1(t, z)

∂t2
= − ∂

∂z

(
−CT

∂ψ1

∂z

)
. (51)

That is

ρ
∂2ψ1(t, z)

∂t2
− CT

∂2ψ1

∂2z
= 0. (52)

If we divide through by ρ, we get our wave equation in the standard form

∂2ψ3(t, z)

∂t2
− c2 ∂2ψ3

∂2z
= 0, (53)

where

c =

√
CT

ρ
. (54)

We have met two elastic constants, CT , which applies for transverse waves,
and CL, which applies for longitudinal waves. These are not standard nota-
tions. One standard notation is to use the Lamé constants λ and µ, with

CT = µ

CL = λ + 2µ. (55)

Sometimes µ is called the shear modulus and λ + 2µ/3 is called the compres-
sion modulus. Another combination that you may read about is Young’s
modulus E = µ(3λ + 2µ)/(λ + µ). Probably what is important is that
an isotropic “Hooke’s Law” solid has two elastic constants and that com-
binations of them control longitudinal and transverse waves. These elastic
constants are quite large. For example, for copper

µ = 4.8 × 1010 N/m2

λ = 10 × 1010 N/m2. (56)
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The density of copper is 8.92 × 103 kg/m3.

Problem 4.1 What is the speed of transverse waves in copper? What is the
speed of longitudinal waves in copper?

Problem 4.2 A longitudinal disturbance generated by an earthquake is ob-
served to travel 1000 km in 3 minutes. Estimate CL = λ + 2µ for the rock
through which the disturbance travels, assuming that the average density of
the rock is 2700 kg/m3.

5 The stress tensor

We have made use of quantities T33 and T12. It is about time to say what
the general notation is. We think of some material that may have internal
forces in it. Imagine a plane surface of area A oriented perpendicular to the
j-axis inside the material. The material on the −xj side of this plane exerts

a force �F on the material that lies on the +xj side of the plane. The force
is proportional to the area A and has components F1, F2, F3. We denote
Fi/A by Tij. There are nine separate quantities Tij since i can be 1,2, or 3
and so can j. Just remember that i is the direction of the force and j is the
direction in which it is being transmitted. The object Tij is called the stress
tensor.

6 Waves in a fluid

A fluid (like water or air) does not resist shear. That is, T13 = 0, and more
generally Tij = 0 for i �= j. Thus there are no transverse waves in a fluid.
Also, T11 = T22 = T33. Their common value is called the pressure, P .

For longitudinal waves moving in the 3-direction, we are interested in
T33 = P . Recall that only ∂T33/∂z entered our F = ma equation for the
motion of the material when a longitudinal wave comes by. In order to keep
the derivation simple, I assumed that T33 was zero in the absence of squeezing
by the wave. In fact, there could have been a constant background value
of T33 and the wave equation would have been the same: the background
pressure does not exert a net force on a little slab of material. We now
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imagine that there is a constant pressure P0 in the fluid and then a little
extra, ∆P , when the wave comes by. (∆P can have either sign.) In our
derivation, we made the assumption that

∆P = −CL
∂ψ3

∂z
(57)

for some constant CL that is characteristic of the material. This works for
fluids. However, CL is not the standard notation, so let’s relate CL to the
quantities people usually use to talk about fluids.

In a fluid, the pressure is a function P (ρ) of the density ρ. Let the density
of the undisturbed fluid be ρ0 and the pressure in the undisturbed fluid be
P0 = P (ρ0). If we squeeze the fluid in the 3-direction, the new density is

ρ = ρ0 ×
∂R3

∂z
. (58)

(A slab of fluid in a box of size ∆R1×∆R2×∆R3 is now squeezed into a box
of the same size in the 1- and 2-directions, but size ∆z in the 3-direction.)
Since

R3 = z − ψ3(t, z), (59)

we have

ρ = ρ0 ×
(

1 − ∂ψ3

∂z

)
. (60)

Thus

∆ρ = −ρ0
∂ψ3

∂z
. (61)

Then

∆P =
dP (ρ0)

dρ
∆ρ = −ρ0

dP (ρ0)

dρ

∂ψ3

∂z
. (62)

The quantity 1/[ρ dP (ρ)/dρ] is called the compressibility κ of the fluid:

κ =
1

ρ

dρ

dP
. (63)

(In writing this, we think of ρ being a function of P instead of P being a
function of ρ. At some risk of being to obvious, I note that

dP

dρ
=

1
dρ
dP

. (64)
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The compressibility is a function of P , but what we want is the compress-
ibility at the standard pressure P0. Then ρ in Eq. (63) is really ρ0.) The
compressibility is big if an increase in pressure causes a big increase in den-
sity. Air is pretty compressible (big κ) while water is pretty incompressible
(small κ). In terms of κ, we have

∆P = −1

κ

∂ψ3

∂z
. (65)

Comparing to Eq. (57), we have

CL =
1

κ
. (66)

This gives the speed of sound in a fluid:

c =

√
1

κρ
. (67)

Problem 6.1 The compressibility of water is κw = 4.9 × 10−10 m2 N−1. The
compressibility of air is κa = 7.1 × 10−6 m2 N−1. The density of water is
ρw = 1.0 × 103 kg m−3. The density of air is ρa = 1.1 kg m−3. (All of
these numbers are approximate values for room temperature and atmospheric
pressure). Find the speed of sound in water and the speed of sound in air.
Suppose we had some kryptonite, a fictional foul smelling green liquid that
has the density of water but the compressibility of air. What would the speed
of sound in kryptonite be?

7 Impedance in a solid or fluid

We studied how waves on a string are reflected and transmitted at a boundary
between two kinds of string. The same analysis applies to transverse and
longitudinal waves in a solid or fluid. Let’s say that there is a wave moving
in the 3-direction in material I and comes to a boundary at z = 0 where it
enters material II. Just to be definite, let’s consider a longitudinal wave.

1) The motion of the material must be continuous at the boundary:

ψ
(I)
3 (t, 0) = ψ

(II)
3 (t, 0). (68)
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2) The force has to match at the boundary:

T
(I)
33 (t, 0) = T

(II)
33 (t, 0). (69)

That is

−C
(I)
L

∂ψ
(I)
3 (t, 0)

∂z
= −C

(II)
L

∂ψ
(II)
3 (t, 0)

∂z
. (70)

We suppose that there is an incident wave f(t−z/cI) and a reflected wave
Rf(t + z/cI) in material I and a transmitted wave Tf(t− c/cII) in material
II. (I had to change notation because, alas, we are using CT for the elastic
modulus for transverse waves so it can’t be the transmission coefficient).
Then condition 1 gives

1 + R = T. (71)

Condition 2 gives

−C
(I)
L

(
− 1

cI

df(t)

dt
+

R

cI

df(t)

dt

)
= −C

(II)
L

(
− T

cII

df(t)

dt

)
. (72)

That is
C

(I)
L

cI

(1 − R) =
C

(II)
L

cII

T. (73)

Since

c =

√
CL

ρ
, (74)

it is useful to define the impedance for longitudinal waves

ZL =
√

ρCL. (75)

Then
Z

(I)
L (1 − R) = Z

(II)
L T. (76)

Solving Eqs. (71), (76), we obtain

R =
Z

(I)
L − Z

(II)
L

Z
(I)
L + Z

(II)
L

,

T =
2Z

(I)
L

Z
(I)
L + Z

(II)
L

. (77)

16



The same result applies to transverse waves, with

ZT =
√

ρCT . (78)

Also, if we are talking about longitudinal waves in a fluid, then we can use
CL = 1/κ, so

ZL =

√
ρ

κ
. (79)

Problem 7.1 The compressibility of water is κw = 4.9 × 10−10 m2 N−1. The
compressibility of air is κa = 7.1 × 10−6 m2 N−1. The density of water is
ρw = 1.0 × 103 kg m−3. The density of air is ρa = 1.1 kg m−3. (All of
these numbers are approximate values for room temperature and atmospheric
pressure). What is the reflection coefficient for a sound wave going from air
and coming to the surface of some water? (Assume that the wave direction
is perpendicular to the water surface).

Problem 7.2 What is the reflection coefficient for a sound wave going from
water and coming to the surface of some copper? (Assume that the wave
direction is perpendicular to the surface. Recall that sound waves in a fluid
are longitudinal).

8 Energy in waves

Waves transmit energy. It’s pretty simple.
String The string to the left of some point z exerts a vertical force

f = −Zc
∂ψ

∂z
(80)

on the string to the right, where Zc = T . This relation is the definition of
the impedance Z. The wave thus transmits power

P = f
∂ψ

∂t
(81)

to the string on the right. Thus we can write the power as

P = −Z c
∂ψ

∂z

∂ψ

∂t
. (82)
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Transverse waves. The material to the left of some point z exerts a
transverse force per unit area f ≡ T13

f = −Zc
∂ψ1

∂z
(83)

on the material to the right, where Zc = CT . It thus transmits power per
unit area

P/A = f
∂ψ1

∂t
(84)

to the material on the right. We can write this as

P/A = −Z c
∂ψ1

∂z

∂ψ1

∂t
. (85)

Longitudinal waves. The material to the left of some point z exerts a
longitudinal force per unit area f = T33

f = −Zc
∂ψ3

∂z
(86)

on the material to the right, where Zc = CL. (In a fluid, f = T33 − T 0
33 is

the change in the pressure above the ambient pressure. One would normally
call it p or ∆P , but f fits with our standard notation.)

It thus transmits power per unit area

P/A = f
∂ψ3

∂t
(87)

to the material on the right. We can write this as

P/A = −Z c
∂ψ3

∂z

∂ψ3

∂t
. (88)

We see that the same formula applies in each case, except that we have
power per unit area for continuous media and just power for waves on a
string.

Let’s see what this is in the case of a sinusoidal vibration wave (either
transverse or longitudinal) moving to the right in some material

ψ(t, z) = A cos
(
ω(t − z/c)

)
. (89)
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We get

P/A = −Z c
(

Aω

c

)
(−Aω) sin2

(
ω(t − z/c)

)
= −Z A2 ω2 sin2

(
ω(t − z/c)

)
. (90)

The time average of the power per unit area is then

〈P 〉/A = 1
2
ZA2 ω2 (91)

since the time average of a squared sine or cosine function is 1/2.
The time average of the power per unit area in a sinusoidal wave is often

called the intensity I of the wave. Thus, the intensity is

I = 1
2
ZA2 ω2 (92)

This is pretty general: the power is proportional to the square of the ampli-
tude and also to ω2. There is also a factor of the impedance.

Let’s try this for reflection and transmission of a wave. Suppose that
medium I lies in z < 0 and medium II lies in z > 0. Let there be a wave
coming from the left in medium I, together with a reflected wave

ψI(t, z) = A cos
(
ω(t − z/cI)

)
+ R A cos

(
ω(t + z/cI)

)
. (93)

In medium II there is a transmitted wave

ψII(t, z) = T A cos
(
ω(t − z/cII)

)
. (94)

The average power in the transmitted wave is

III = 1
2
ZIIT

2 A2 ω2
II . (95)

It’s a little trickier to work out the power in the medium I:

P/A = −ZI cI

[
Aω

cI

sin
(
ω(t − z/cI)

)
− RAω

cI

sin
(
ω(t + z/cI)

)]

×
[
−Aω sin

(
ω(t − z/cI)

)
− RAω sin

(
ω(t + z/cI)

)]
= ZIA

2ω2
[
sin2

(
ω(t − z/cI)

)
− R2 sin2

(
ω(t + z/cI)

)]
(96)

The time average of this is

〈PI〉/A = 1
2
ZIA

2ω2 [1 − R2]. (97)
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This makes great sense. First, there is the power that would be transmit-
ted by the incident wave by itself. Then there is the power that would be
transmitted by the reflected wave by itself, with A replaced by RA. But the
power transmitted by the reflected wave comes with a minus sign because the
reflected wave is moving in the −z direction. The total power transmitted
to the right is just the sum of these:

〈PI〉/A = Iinc − Irefl. (98)

Is energy conserved? We should have

〈PI〉/A = 〈PII〉/A. (99)

That is, we need
ZI [1 − R2] = ZIIT

2 (100)

Since T = 1 + R, the needed relation is

ZI [1 − R][1 + R] = ZII [1 + R]2 (101)

or
ZI [1 − R] = ZII [1 + R] (102)

If we solve this for R we get

R =
ZI − ZII

ZI + ZII

. (103)

This is just the relation we found earlier for R.
There is a simple lesson. A fraction R2 of the incident energy is reflected.

The rest, a fraction 1 − R2, is transmitted.
Note that, in the case that R is close to 1, the transmission coefficient

T is not small, T ≈ 2. But the power in the transmitted wave is small:
(1 + R)(1−R) ≈ 2(1−R). The explanation is that R is close to 1 when ZII

is small compared to ZI , so that the power (1/2) ZIIT
2 A2 ω2

II is small. This
happens, for instance, when a sound wave moves from water into air.

Problem 8.1 A transverse sound wave travels along the z-axis in an isotropic
solid, medium I. This solid joins a second isotropic solid, medium II, at z = 0.
The characteristics of the two solids are such that one quarter of the energy in
the incident wave is reflected and three quarters is transmitted into medium
II. What can you conclude about the reflection and transmission coefficients
R and T? What can you conclude about the ratio ZI/ZII of the impedances
of the two materials? (Be careful, there are two solutions.)
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