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1 The simple harmonic oscillator

We begin with Newton’s second law of motion, “F = ma,” written as

mψ̈ = F (1)

where ψ represents the position of a particle with mass m and F is the force
acting on the particle. For the simple harmonic oscillator, the force is

F = −sψ, (2)

where s represents, for instance, the stiffness of a spring that acts to restore
the particle to position ψ = 0. Thus

ψ̈ = −ω2
0ψ, (3)

where

ω0 =

√
s

m
. (4)

[The variable ψ is often called x and s is often called k.]

2 Solution

A solution of Eq. (3) is

ψ(t) = A cos(ω0t + φ). (5)

where A and φ are constants. To verify this, differentiate (using the chain
rule):

ψ̇(t) = −Aω0 sin(ω0t + φ) (6)

so
ψ̈(t) = −Aω2

0 cos(ω0t + φ). (7)
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That is ψ̈ = −ω2
0ψ.

The essential feature of this solution is that it oscillates. The “angular
frequency” of the oscillation is ω0. The particle returns to where it was after
a time τ , called the “period,” given by ω0τ = 2π, or

τ =
2π

ω0

. (8)

The “frequency” of the oscillation is defined to be ν0 = 1/τ , or

ν0 =
ω0

2π
. (9)

The quantity A is the “amplitude” of the oscillation: the maximum value
of ψ. The quantity φ is the “phase constant.”

Problem 2.1 If the oscillator described by Eqs. (1) and (2) has a mass m =
0.01 kg and a spring constant s = 16 N/m, calculate the frequency, the
angular frequency, and the period of the oscillations.

3 Initial conditions

There is a solution for any initial position ψ(0) and velocity ψ̇(0). If we are
given {ψ(0), ψ̇(0)}, we can adjust A and φ to match:

ψ(0) = A cos(φ)

ψ̇(0) = −Aω0 sin(φ). (10)

It is usually simplest to write down Eq. (10) with the initial conditions you
have in mind and then solve the equation for A and φ. However, let us verify
that we can solve Eq. (10) no matter what the initial conditions are. The
solution is

A = [ψ(0)2 + (ψ̇(0)/ω0)
2]1/2 (11)

and

tan(φ) = − ψ̇(0)

ω0ψ(0)
. (12)

Since tan(φ + π) = tan(φ), there are two solutions of Eq. (12). You can
determine which solution you want by determining the sign of cos(φ) or
sin(φ) from Eq. (10).
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Problem 3.1 Suppose that ψ(t) obeys Eq. (3) with ω0 = 1 s−1. The system
is started from ψ = 0 with an initial velocity ψ̇ = 0.2 m/s. What are the
amplitude and phase in Eq. (5) for the solution?

Problem 3.2 Suppose that ψ(t) obeys Eq. (3) with ω0 = 0.3 s−1. The system
is started from rest with an initial position ψ = −1.2 m. What are the
amplitude and phase in Eq. (5) for the solution?

4 Vector diagrams

It is sometimes useful to represent the solution ψ(t) = A cos(ω0t + φ) by
means of a diagram in which we use two coordinates,

ψ(t) = A cos(ω0t + φ)

η(t) = A sin(ω0t + φ). (13)

We can consider {ψ, η} as a point in a plane. Bringing in another coordinate
might seem to just make our lives more complicated, but it is nice because
{ψ, η} lies on a circle of radius A and moves around the circle with uniform
angular velocity ω0.

If there are two oscillators with different values of A and φ, drawing a
vector diagram can help us see the relationship between the two solutions.

We can also use a vector diagram to picture the velocity and acceleration.
For the velocity, we have

ψ̇(t) = −ω0A sin(ω0t + φ) = A cos(ω0t + φ + π/2)

η̇(t) = ω0A cos(ω0t + φ) = A sin(ω0t + φ + π/2). (14)

For the acceleration, we have

ψ̈(t) = −ω2
0A cos(ω0t + φ) = ω2

0 A cos(ω0t + φ + π)

η̈(t) = −ω2
0A sin(ω0t + φ) = ω2

0 A sin(ω0t + φ + π). (15)

Each of these vectors moves in a circle with angular velocity ω0, but the
velocity vector moves with a phase advance of π/2 and the acceleration moves
with a phase advance of π.

3



Thus even though “η” is just something we made up, drawing the solution
this way can help us to picture what is going on.

Later, we will use complex numbers to represent our oscillator solutions.
Then we will see that ψ and η here are just the real and imaginary parts of
the solution.

5 Energy

Our mass has a kinetic energy

T = 1
2
mψ̇2. (16)

The spring has potential energy

V = 1
2
sψ2. (17)

The total energy is
W = 1

2
mψ̇2 + 1

2
sψ2. (18)

Energy conservation tells us that W should be conserved: dW/dt = 0.
We can check this directly from the differential equation:

dW/dt = mψ̈ψ̇ + sψ̇ψ

= m(− s

m
ψ)ψ̇ + sψ̇ψ

= 0. (19)

The kinetic energy and the potential energy each change with time, but
their sum is constant.

Problem 5.1 Suppose the oscillator described by Eqs. (1) and (2) has a mass
m = 0.01 kg and a spring constant s = 16 N/m. It is set into oscillation
with an amplitude A = 0.01 m and a phase constant φ = 0.367 in Eq. (5).
What is its energy W? If we change the phase angle to φ = 1.263, what is
the energy?
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6 Complex numbers

Complex numbers and functions of complex numbers are very useful in
physics.

A complex number z is a pair of real numbers {x, y}. One calls x the real
part of z and y the imaginary part of z: x = Re z, y = Im z.

We can add two complex numbers according to the rule

{x1, y1} + {x2, y2} = {x1 + x2, y1 + y2}. (20)

We can subtract two complex numbers according to the rule

{x1, y1} − {x2, y2} = {x1 − x2, y1 − y2}. (21)

We can multiply two complex numbers according to the rule

{x1, y1} × {x2, y2} = {x1x2 − y1y2, x1y2 + x2y1}. (22)

We can divide two complex numbers according to the rule

{x1, y1}
{x2, y2}

=

{
x1x2 + y1y2

x2
2 + y2

2

,
−x1y2 + x2y1

x2
2 + y2

2

}
. (23)

There is a complex number “zero,”

0 = {0, 0} (24)

such that
z + 0 = z. (25)

There is also a complex number “one,”

1 = {1, 0} (26)

such that
z × 1 = z. (27)

We think of the familiar real numbers as being a subset of the complex
numbers by identifying a complex number of the form {x, 0} with the real
number x. For complex numbers {x1, 0}, {x2, 0}, our rules for adding, sub-
tracting, multiplying, and dividing all reduce to the usual rules for these
operations when we identify {x, 0} → x. Similarly, the complex numbers 0
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and 1 are identified with the real numbers 0 and 1 under the identification
{x, 0} → x.

With these definitions, all of the usual rules of algebra work. For instance,
if a, b, and c are complex numbers with

a

b
= c. (28)

Then
a = b c. (29)

This is not obvious. You have to prove it. Similarly, one should systemati-
cally write down all of the rules of algebra and prove, one by one, that they
are correct.

Working with complex numbers is easier than it might seem from the
mathematical definitions given above. You need one more bit of knowledge:
there is a complex number i with the property

i × i = −1. (30)

The complex number i is i = {0, 1}. Then the number z = {x, y} is z = x+iy.
It is usually convenient to write x+ iy instead of {x, y}. Now we can just use
the ordinary rules of arithmetic to multiply and divide. For multiplication,
we have

(x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2y1y2

= x1x2 − y1y2 + i(x1y2 + y1x2). (31)

For division, we have

(x1 + iy1)

(x2 + iy2)
=

(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)

=
x1x2 − i2y1y2 + iy1x2 − ix1y2

x2
2 − i2y2

2 + ix2y2 − ix2y2

=
x1x2 + y1y2 + i(y1x2 − x1y2)

x2
2 + y2

2

. (32)

One sometimes uses the “complex conjugate” z∗ of a number z = x + iy
(with x and y real). The complex conjugate is simply z∗ = x − iy. In fact,
we used the complex conjugate of (x2 + iy2) in the derivation just given.
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Problem 6.1 How would you write 1/i in the form x + iy?

Problem 6.2 What are the solutions of z2 + 2z + 2 = 0?

One can have functions f of a complex variable, such that for every
complex number z, f(z) is a complex number. The study of functions of a
complex variable is a big area of mathematics. For our purposes, we will use
polynomial functions and ratios of polynomials and one more function, the
exponential function

exp(z) = ez. (33)

We can adopt the definition (for x and y real numbers)

exp(x + iy) = exp(x)[cos(y) + i sin(y)], (34)

which relates exp(z) to functions of real variables that we already know. If
we take this as the definition, then we can prove (with a little work) that

exp(z1 + z2) = exp(z1) exp(z2). (35)

A particular example of Eq. (34) is

exp(iθ) = cos(θ) + i sin(θ). (36)

We will use the exponential function in studying oscillators.

Problem 6.3 How would you write exp(iπ) in the form x + iy?

Problem 6.4 How would you write exp(iπ/2) in the form x + iy?

Problem 6.5 How would you write ii in the form x + iy?

Given a complex number z−x+ iy, one defines the “complex conjugate”
z∗ by

z∗ = x − iy. (37)

We define the “absolute value” of z by

|z| =
√

x2 + y2. (38)
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Note that

z∗z = (x + iy)(x − iy) = x2 − ixy + ixy + y2 = x2 + y2. (39)

Thus
z∗z = |z|2. (40)

We use |z| to measure the “size” of a complex number z. In physics talk, we
say that z = x+ iy is small if both x and y are small, which is the same thing
as saying that |z| is small. In math talk, we say that a sequence zj = xj + iyj

approaches 0 if the sequence of real numbers |zi| approaches zero.
We have used z = x + iy to represent a complex number z. We can also

use
z = A eiφ (41)

where A and φ are real numbers and A ≥ 0. We call A the amplitude and φ
the phase of z. Then

z = A cosφ + iA sin φ (42)

so we can find the real and imaginary parts of z if we know the amplitude
and phase, and vice versa.

Note that with this definition of A and φ,

|z| = A (43)

and
|eiφ| = 1. (44)

One can do calculus with complex numbers. The definition of derivative
is

f ′(z) ≡ df(z)

dz
= lim

∆z→0

f(z + ∆z) − f(z)

∆z
. (45)

The limit has to exist for ∆z → 0 in any direction. That is, ∆z could be
purely real or purely imaginary or something in between. A more physics
minded way to state this is that

f(z + ∆z) − f(z) = f ′(z) ∆z + R(∆z) (46)

where R(∆z) is a function such that R(∆z)/∆z → 0 zero as ∆z → 0. If we
write ∆z = ∆x + i∆y, then

f(z + ∆z) − f(z) = f ′(z) ∆x + if ′(z) ∆x + R(∆z) (47)
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The crucial requirement is that the same complex number f ′(z) multiplies
both ∆x and i∆y. Most functions of x and y that someone might make up do
not have this property. But when a complex function of a complex variable
z does have this property, we say that it is differentiable and its derivative
is f ′(z). If f ′(z) exists in a region of the complex plane, the function is said
to be “analytic” in that region. Analytic functions have several wonderful
properties, which are explored in a course on complex analysis.

For our purposes we need to know just a few facts. To start with, there
are general rules for calculus

d

dz
(af(z) + b g(z)) = af ′(z) + b g′(z), (48)

d

dz
(f(z) g(z)) = f ′(z) g(z) + f(z) g′(z), (49)

and the chain rule
d

dz
f(g(z)) = f ′(g(z)) g′(z). (50)

Next, there are just a couple of kinds of functions that we will encounter.
First, all polynomials are analytic functions. If

f(z) = c0 + c1 z + c2 z2 + · · · + cN zN (51)

then
f ′(z) = c1 + 2c2 z + · · · + NcN zN−1 (52)

Second, exp(z) is an analytic function. Its derivative is

d

dz
exp(z) = exp(z). (53)

In particular, this means that

d

dt
exp(at + b) = a exp(at + b) (54)

for any complex numbers a and b and a real variable t. (This holds also for
a complex variable t too, but I have in mind applications in which t is the
time.) To derive this, let z(t) = at + b, Then use the “chain rule”

d

dt
exp(z(t)) =

dz(t)

dt
× d

dz
exp(z) = a × exp z. (55)
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There is a lot of material in this section! On the other hand, it is almost
all stuff that you know already. The crucial fact is that what you have
already learned about algebra and calculus applies also for complex numbers
and analytic complex functions of complex numbers. Of course, one really
needs to prove everything here. I don’t really recommend doing that, but
it is good to prove a few of these properties for yourself just to see how it
works.

7 Different forms of the solution

There are (at least) four ways to represent our solution for the harmonic
oscillator:

ψ(t) = A cos(ω0t + φ),

ψ(t) = Bp cos(ω0t) + Bq sin(ω0t),

ψ(t) = C exp(iω0t) + C∗ exp(−iω0t),

ψ(t) = Re{D exp(iω0t)}. (56)

In the last two equations, we have used complex numbers, as discussed above.
We use the relation exp(iθ) = cos(θ) + i sin(θ). To show that the last form is
equivalent to the first form, we let D = A exp(iφ) and write

Re{D exp(iω0t)} = Re{A exp(iφ) exp(iω0t)}
= Re{A exp(iω0t + iφ)}
= Re{A exp(i[ω0t + φ])}
= Re{A[cos(ω0t + φ) + i sin(ω0t + φ)]}
= A cos(ω0t + φ). (57)

With this preparation, we can look into examples of oscillators in physics,
beyond just the mass on a spring.

Problem 7.1 Suppose the oscillator described by Eqs. (1) and (2) has a mass
m = 2.0 kg and a spring constant s = 8 N/m. It is set into oscillation
with an amplitude A = 0.1 m and a phase constant φ = π/2 in the first of
Eqs. (??). Express this same motion in the form of the second, third, and
fourth equation in Eqs. (??), with numerical values for the parameters ω0,
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Bp, Bq, C, and D. When writing the complex parameters C, and D, write
them in the form |C| exp(iφC) and |D| exp(iφD).

Problem 7.2 Calculate the maximum acceleration, in units of the acceleration
of gravity g, of a pickup stylus on a record player that is reproducing some
music with a frequency of 2 kHz with an amplitude of 0.01 mm. (You may
need to go to an antique store to find a record player to examine.)

8 Mass hanging on a spring

Imagine a body with mass m hanging from the end of a spring of spring
constant s, the other end of which is fixed. The force is

F = −sx − mg (58)

where x is the vertical position of the body. The force vanishes at position
x0 = −mg/s. Let ψ = x − x0. We can rewrite the force as

F = −sψ. (59)

Then the equation of motion is exactly the harmonic oscillator equation of
motion,

mψ̈ = −sψ. (60)

Problem 8.1 An astronaut on the surface of the moon weighs rock samples
using a light spring balance. The balance, which was calibrated on earth,
has a scale 100 mm long which reads from 0 to 1 kg. The astronaut places
a certain rock on the balance. The spring oscillates, with a period of 1.0 s.
The astronaut waits for friction to bring the system to equilibrium. Then
the balance reads 0.4 kg. What is the acceleration due to gravity on the
moon? There was a tiny amount of friction, but you can ignore this friction
in solving the problem.
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9 Torsional vibrations

Another example of an oscillator is a torsional vibrator. We imagine an object
that can rotate about an axis and we let ψ be the angle through which it has
rotated from its equilibrium position. Then

Iψ̈ = Ts (61)

where Ts is the torque on the object and I is the moment of inertia of the
object. (For example, I = 1

2
MR2 for a disk.) We get a harmonic oscillator if

Ts = −cψ (62)

where c is a constant. Then
ψ̈ = −ω2

0ψ (63)

where

ω0 =

√
c

I
. (64)

Thus the oscillator will oscillate with angular frequency ω0:

ψ = A cos(ω0t + φ). (65)

10 The simple pendulum

Consider a ball of mass m suspended from a fixed point by means of a string
of length l. Let the angle that the string makes with the vertical direction
be ψ. Then

Iψ̈ = Ts (66)

where the moment of inertia of the ball about the suspension point is simply
I = ml2. The torque Ts is from the force of gravity. The string exerts a force
on the ball, but this force is directed toward the point of suspension so it
produces no torque. The torque produced by gravity is

Ts = −mgl sin(ψ). (67)

Thus

ψ̈ = −mgl

ml2
sin(ψ) (68)
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or
ψ̈ = −g

l
sin(ψ). (69)

This is not exactly the harmonic oscillator equation. But suppose that ψ is
small. Then

sin(ψ) ≈ ψ (70)

so that the equation becomes

ψ̈ = −g

l
ψ. (71)

This is
ψ̈ = −ω2

0ψ. (72)

where

ω0 =

√
g

l
. (73)

Again the solutions are oscillatory:

ψ = A cos(ω0t + φ). (74)

The angular frequency gets smaller as the length l becomes greater.

11 Circuits

In a simple circuit with a coil with self inductance L and negligible resistance
and a capacitor with capacitance C, the charge ψ on the capacitor obeys

Lψ̈ = − 1

C
ψ (75)

That is ψ̈ = −ω2
0ψ with

ω0 =

√
1

LC
. (76)

This is the basis of lots of useful circuits, as, for example, in a radio. For
more on the LC circuit, see pages 102-103 of French.
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Problem 11.1 The figure shows an LC circuit with a battery to get it started.
The capacitor is first charged to a voltage V1 by means of the battery. At
time t = 0, the switch is thrown to connect the charged capacitor across the
coil. derive the amplitude and phase constant of the resulting oscillation in
the charge on the capacitor.

12 Why we might see oscillators often

Suppose that a mass m can move in one dimension, labelled by a coordinate
r. Then the equation of motion is

mr̈ = − d

dr
V (r) (77)

where V (r) is the potential energy. Let V (r) have a minimum at r = R.
(That’s a pretty common situation.) Define ψ = r−R. Then for small ψ we
can write

V (R + ψ) ∼ V (R) +

[
dV (r)

dr

]
r=R

ψ

+
1

2

[
d2V (r)

dr2

]
r=R

ψ2 +
1

3!

[
d3V (r)

dr3

]
r=R

ψ3 + · · · . (78)

(This is the Taylor expansion.) The condition that V (r) has a minimum at
r = R implies that [

dV (r)

dr

]
r=R

= 0 (79)

and also that [
d2V (r)

dr2

]
r=R

> 0 (80)
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(or possibly that the second derivative equals zero, but we assume that that
doesn’t happen).

Now suppose that the particle is pushed just a little bit from its equilib-
rium position. What will happen? Well, it can’t go very far because it hasn’t
got enough energy. Thus ψ will be non-zero, but it will be small. We are
thus entitled to make the approximation of neglecting the ψ3, ψ4, etc terms
in the Taylor expansion of the potential. This gives

V (R + ψ) ≈ V (R) +
1

2
sψ2, (81)

where

s =

[
d2V (r)

dr2

]
r=R

. (82)

With this approximation, the force is

− d

dψ
V (R + ψ) = −sψ. (83)

This gives the equation of motion

mψ̈ = −sψ, (84)

so we have a harmonic oscillator. This is an approximation, and the approx-
imation is that the particle is near its equilibrium position. If we supply lots
of energy to the particle instead of just a little, the approximation will break
down.

The pendulum is an example of this. The equation of motion is

ml2θ̈ = − d

dθ
V (θ) (85)

where
V (θ) = mgl[1 − cos(θ)]. (86)

Here I have used an angle instead of a position as the coordinate, so you
may not have seen the equation of motion written like this. But it is easy to
check that this equation amounts to

θ̈ = −g

l
sin(θ). (87)
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which is what we had previously in Eq. (??). We have

V (θ) = mgl
[
1

2
θ2 − 1

4!
θ4 + · · ·

]
(88)

If we keep just the first term, we have the equation for simple harmonic
motion. That will be an approximation to the exact equation. The approx-
imation should be good for a pendulum that is not disturbed much from
equilibrium.

Problem 12.1 Use a numerical solution of the exact equation and the approx-
imate equation for a pendulum to examine the motion for a pendulum that
is started from rest with an initial angle θ0 = π/2. (Just set m = g = l = 1.)
Is the period of the pendulum longer or shorter than T0 ≡ 2π/ω0? By how
much? That is, what is the approximate numerical value of T/T0? (Hint: I
recommend that you make a graphs of the motion for the pendulum and for
the analogous simple harmonic oscillator and read approximate values of T
and T0 off of your graph. Mathematica knows about π, which can be entered
as Pi.)

13 Molecular vibrations

As an example, consider an ionic molecule made of two atoms separated by
a distance r. Just to keep things simple, we suppose that one of the atoms is
much lighter than the other, so that the heavy atom remains fixed and the
light one can move around. For example, we may consider H Cl. We further
simplify the problem by supposing that the light atom can move in only one
dimension.

Let the light atom have mass m and a potential energy

V (r) = − e2

4πε0r
+

B

r9
(89)

The first term gives an attractive Coulomb force. The second gives a repul-
sion at short distances. There is an equilibrium at r = R given by

0 = +
e2

4πε0R2
− 9B

R10
(90)
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Thus

B =
e2R8

36πε0

(91)

The stiffness coefficient is the second derivative of V (r) at the minimum,

s = − 2e2

4πε0R3
+

90B

R11
=

2e2

πε0R3
. (92)

Thus if we let r = R + ψ, the equation of motion for ψ is

mψ̈ = −sψ, (93)

which gives vibrations with angular frequency

ω0 =

√
s

m
=

√
2e2

mπε0R3
. (94)

Chemists study molecular vibrations with lasers: our model atom will
absorb laser light with angular frequency ω0.

14 Damping

We have studied the harmonic oscillator with mass m and a restoring force
−sψ,

mψ̈ = −sψ. (95)

Let us now add a frictional force −bψ̇:

mψ̈ = −sψ − bψ̇. (96)

This is a model that applies approximately to lots of physical systems. The
idea is that “friction” acts to slow things down when they are moving. If
the frictional force is a function of F (ψ̇) then expanding it in powers of ψ̇ we
should have F (ψ̇) = c0 + c1ψ̇ + c2ψ̇

2 + · · ·. We want c0 = 0 so that F (0) = 0.
(Whatever force acts when ψ̇ = 0 is included in the “spring force.”) Then
we want c1 < 0 so that the friction force slows things down rather than the
reverse. (Frictional forces remove macroscopic potential and kinetic energy
from the system and turn it into microscopic vibrations or “heat energy.” If
c1 were positive, the body in question would gain kinetic energy from the
microscopic heat energy, in violation of the second law of thermodynamics.)
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Finally, if ψ̇ is small, we can neglect the ψ̇2 and higher order terms. This is
not such a great approximation for a block sliding on a table, but it should
be good if we spread a layer of oil between the block and the table because
forces of viscosity in fluids are proportional to velocity differences.

We can divide by m in Eq. (??) to obtain

ψ̈ + γψ̇ + ω2
0ψ = 0, (97)

where ω0 =
√

s/m and γ = b/m.
What are the solutions of this? To find out, try the ansatz

ψ = C exp(pt). (98)

(If you have taken a course in differential equations, using this ansatz is what
you learned to do for a linear differential equation with constant coefficients.)
There are three points to address. First, this may seem too restrictive. In
the end, in order to match initial conditions for ψ(0) and ψ̇(0) we will need
a more complicated solution. However, we have a linear equation, so that
if ψ1(t) is a solution and ψ2(t) is a solution, then ψ1(t) + ψ2(t) is also a
solution. Thus we have a chance to build up a complicated solution from
simple solutions. Second, we will allow ourselves the option that C and p
might be complex. We can get a real solution by adding complex solutions.
Third, we need to know how to differentiate exp(pt). That’s easy. As we
discussed in the section about complex numbers,

d

dt
exp(pt) = p exp(pt). (99)

This works even if p is complex.
We are now ready to use our ansatz in the differential equation. The

differential equation holds if

p2C exp(pt) + γpC exp(pt) + ω2
0C exp(pt) = 0. (100)

Equivalently, the differential equation holds if

p2 + γp + ω2
0 = 0. (101)

Our differential equation has become an algebraic equation. Furthermore,
we know the solutions:

p = −1
2
γ ±

√
1
4
γ2 − ω2

0. (102)
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There are two cases to consider (plus a case on the dividing line).

Case I: γ2 > 4ω2
0. We can call this heavy damping. There are two possible

values for p,

−p1 ≡ µ1 = 1
2
γ +

√
1
4
γ2 − ω2

0,

−p2 ≡ µ2 = 1
2
γ −

√
1
4
γ2 − ω2

0. (103)

We have two simple solutions,

C1 exp(−µ1t)

C2 exp(−µ2t) (104)

We can add these two simple solutions to obtain

ψ(t) = C1 exp(−µ1t) + C2 exp(−µ2t) (105)

We take C1 and C2 to be real so that ψ(t) is real. We can adjust the values
of C1 and C2 to fit the initial conditions. The solution displays exponential
decay; in fact, two kinds of exponential decay with different decay constants.

Case I: γ2 < 4ω2
0. We can call this light damping. There are two possible

values for p. If we define

ωf =
√

ω2
0 − 1

4
γ2 (106)

then the two solutions are

p1 = −1
2
γ + iωf ,

p2 = −1
2
γ − iωf . (107)

We have two simple solutions,

C1 exp(−1
2
γt) exp(iωf t)

C2 exp(−1
2
γt) exp(−iωf t) (108)

We can add these two simple solutions to obtain

ψ(t) = exp(−1
2
γt) [C1 exp(iωf t) + C2 exp(−iωf t)] (109)

We can make ψ(t) real by choosing C2 to be the complex conjugate of C1,
which we call simply C. Then our solution is

ψ(t) = exp(−1
2
γt) [C exp(iωf t) + C∗ exp(−iωf t)]. (110)
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We can write this without any complex numbers if we take C = 1
2
A exp(iφ),

C∗ = 1
2
A exp(−iφ), where A and φ are real. then

ψ(t) = A exp(−1
2
γt) cos(ωf t + φ). (111)

Thus we have oscillations but modified by an exponential decay factor. The
oscillations slowly die away.

Notice how useful complex numbers have been for this analysis.

Problem 14.1 Consider an oscillator with mass m = 1.0 kg attached to a
spring with stiffness s = 64 N/m. The mass slides on some oil, so that the
frictional force has the form −b dψ/dt. (a) What value of b would make the
amplitude decrease from A to A/e in a time 10 s? (b) One often defines the
Q-value of on oscillator as ω0/γ. That way if the oscillator is very lightly
damped, its Q is big. What is the Q value for the oscillator with this value
of b? (c) What value for b would put the oscillator just at the boundary
between light damping and heavy damping? (The boundary is called critical
damping.)

Problem 14.2 Show that the amplitude of a damped vibration is halved in a
time 1.39/γ.

Problem 14.3 Show that the successive maxima of ψ for a damped oscillator
are separated in time by ∆t = 2π/ωf .

15 Oscillator circuit with damping

We have studied the electric LC oscillator circuit, in which there is a coil
with self-inductance L in series with a capacitor with capacitance C. Now
lets add a resistor with resistance R in series with these. The potential drop
across the coil is LdI/dt, the potential drop across the resistor is RI, and the
potential drop across the capacitor is Q/C. The total potential drop around
the circuit is zero, so

L
dI

dt
+ RI + Q/C = 0. (112)
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We also recognize that I = dQ/dt, so that this equation is

L
d2Q

dt2
+ R

dQ

dt
+ Q/C = 0. (113)

To make this look like our standard oscillator equation, we denote Q by ψ.
Then

Lψ̈ + Rψ̇ + (1/C) ψ = 0. (114)

We divide by L and denote

ω0 =

√
1

LC

γ =
R

L
(115)

Then
ψ̈ + γψ̇ + ω2

0ψ = 0. (116)

We thus have the standard differential equation for a damped oscillator.
For light damping, γ2 < 4ω2

0, the solution is

ψ(t) = A exp(−1
2
γt) cos(ωf t + φ), (117)

where
ωf =

√
ω2

0 − γ2/4 (118)

The circuit oscillates, but the oscillations die out with a characteristic time
2/γ.

Problem 15.1 The figure shows an LRC circuit with a battery to get it started.
The capacitor is first charged to a voltage V1 by means of the battery. At
time t = 0, the switch is thrown to connect the charged capacitor across
the coil. Find the charge Q(t) on the capacitor as a function of time t for
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t > 0. What is the condition on R compared for a given L and C such that
the circuit oscillates instead of having Q just go to zero without oscillations?
For R such that the current does oscillate, sketch the qualitative behavior of
Q(t) exhibited by your solution.

16 Forced vibrations

What if we take a damped oscillator and subject it to a force that varies
with time proportionally to cos(ωt)? Here we have in mind that ω is under
our control. It might be close to the natural frequency of the oscillator, or it
might not.

For a mechanical oscillator, let the force be F0 cos(ωt), so that the differ-
ential equation is

mψ̈ + bψ̇ + sψ = F0 cos(ωt) (119)

Dividing through by m, defining f0 = (F0/m), and using our previous defi-
nitions for ω0 and γ, this is

ψ̈ + γψ̇ + ω2
0ψ = f0 cos(ωt). (120)

This same equation arises in other circumstances also.
How can we solve Eq. (??)? To start, we will look for a “steady state”

solution. Specifically, we will look for a solution of the form

ψ(t) = A cos(ωt + φ). (121)

We call this “steady state” because the oscillator oscillates forever with the
angular frequency of the driving force. Later, we will see that there are
solutions in which the oscillator does something else for awhile before settling
down to the steady state solution.

OK, how do we find a solution of the form (??)? We have to show that for
a certain amplitude A and phase φ, this ψ(t) actually solves the differential
equation (??). In addition, we have to find A and φ. There is an easy way
to do this. Look for a solution η(t) of the equation

η̈ + γη̇ + ω2
0η = f0 exp(iωt) (122)

of the form
η(t) = C exp(iωt). (123)
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Here C is a complex constant. Once we have found η(t), break it up into its
real and imaginary parts:

η(t) = ψ(t) + iλ(t). (124)

Then we will have

ψ̈ + iλ̈ + γψ̇ + iγλ̇ + ω2
0ψ + iω2

0λ = f0 cos(ωt) + if0 sin(ωt). (125)

Since two complex numbers are equal if both their real and their imaginary
parts are equal, this is actually two equations,

ψ̈ + γψ̇ + ω2
0ψ = f0 cos(ωt),

λ̈ + γλ̇ + ω2
0λ = f0 sin(ωt). (126)

The first equation tells us that ψ(t) is the function we want. We can just
throw λ(t) away.

Recall that the form of η that we are looking for is

η(t) = C exp(iωt). (127)

Let us write the constant C as

C = A exp(iφ) (128)

with A and φ real. Then

η(t) = A exp(i[ωt + φ]) = A cos(ωt + φ) + iA sin(ωt + φ). (129)

Thus
ψ = A cos(ωt + φ), (130)

which is the form that we were seeking.
We thus see that we should solve

η̈ + γη̇ + ω2
0η = f0 exp(iωt) (131)

with
η(t) = C exp(iωt). (132)

That’s really easy. We get

−ω2C exp(iωt) + iωγC exp(iωt) + ω2
0C exp(iωt) = f0 exp(iωt). (133)
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That is
[−ω2 + iωγ + ω2

0] C = f0. (134)

The differential equation is solved if the complex constant C is

C =
f0

ω2
0 − ω2 + iωγ

. (135)

We can see immediately that C is big if we choose ω so that the denom-
inator is small, ω ≈ ω0. This is the most important lesson about the driven
oscillator.

To see what is happening in more detail, we should write C in the form
(??). To do that multiply and divide the expression for C by the complex
conjugate of the denominator:

C =
f0

ω2
0 − ω2 + iωγ

ω2
0 − ω2 − iωγ

ω2
0 − ω2 − iωγ

=
f0 [ω2

0 − ω2 − iωγ]

(ω2
0 − ω2)2 + (ωγ)2

. (136)

Thus

C =
f0√

(ω2
0 − ω2)2 + (ωγ)2

⎧⎨
⎩ ω2

0 − ω2√
(ω2

0 − ω2)2 + (ωγ)2
+ i

−ωγ√
(ω2

0 − ω2)2 + (ωγ)2

⎫⎬
⎭ .

(137)
This has the form

C = A {cos(φ) + i sin φ} , (138)

where

A =
f0√

(ω2
0 − ω2)2 + (ωγ)2

(139)

and

cos(φ) =
ω2

0 − ω2√
(ω2

0 − ω2)2 + (ωγ)2
, sin(φ) =

−ωγ√
(ω2

0 − ω2)2 + (ωγ)2
. (140)

We say that the oscillator is “in resonance” when ω = ω0. Then φ = −π/2
and A is almost maximum. If γ is small, then the amplitude is very large
near resonance.

Problem 16.1 A system with m = 0.1 kg, s = 1.6 N/m and b = 0.1 kg/s
is driven by a harmonically varying force with amplitude 2 N. Find the
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amplitude and phase of the steady state motion when the angular frequency
of the driving force is (a) ω = 0.4 s−1, (b) ω = 4 s−1, (c) ω = 40 s−1.

Problem 16.2 If γ is fairly small, the amplitude A in Eq. (??) is big when
ω ≈ ω0. For which value of ω is it biggest? What is the value of A at this
value of ω?

17 Energy in the driven oscillator

Let’s review the driven oscillator. Suppose that we have a mechanical os-
cillator with a body of mass m attached to a spring of stiffness s, with a
frictional force −b times the velocity. Now we drive the system with a force
F0 cos ωt. Then the displacement ψ of the body obeys

mψ̈ + bψ̇ + sψ = F0 cos(ωt). (141)

We thus have
ψ̈ + γψ̇ + ω2

0ψ = f0 cos(ωt). (142)

with γ = b/m, ω2
0 = s/m, and f0 = F0/m. We know the steady state solution

of this,
ψ(t) = A cos(ωt + φ). (143)

Here the amplitude A is

A =
f0√

(ω2
0 − ω2)2 + γ2ω2

. (144)

Also,

A sin(φ) = − ωγf0

(ω2
0 − ω2)2 + γ2ω2

. (145)

We will use this later. We see that A is much big if γ/ω0 is small and ω is
close to ω0.

Now we can look at the energy stored in the oscillator. The energy is

W = 1
2
mψ̇2 + 1

2
sψ2. (146)

That is,

W =
mA2

2

{
ω2 sin2(ωt + φ) + ω2

0 cos2(ωt + φ)
}

. (147)
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For ω = ω0, W is a constant [since sin2(ωt + φ) + cos2(ωt + φ) = 1], but in
general, it is a constant part plus a part that oscillates. We can easily find
the average value, 〈W 〉, of W , by averaging over one period. We use

〈sin2(ωt + φ)〉 =
1

2π

∫ π

−π
dθ sin2(θ) =

1

2
. (148)

and

〈cos2(ωt + φ)〉 =
1

2π

∫ π

−π
dθ cos2(θ) =

1

2
. (149)

This gives

〈W 〉 =
mA2

4

{
ω2 + ω2

0

}
. (150)

We can substitute from Eq. (??) for A to get

〈W 〉 =
mf 2

0

4

ω2 + ω2
0

(ω2
0 − ω2)2 + γ2ω2

. (151)

This is perhaps a little complicated, but it does show us that if γ is small,
the stored energy is biggest when ω is near to ω0. At ω = ω0, 〈W 〉 is

〈W 〉 =
mf 2

0

2ω2
0

Q2, (152)

where Q = ω0/γ. That’s big if Q is big.
Since there is friction in the oscillator, it is losing energy. But it is gaining

the same amount of energy from the driving force. We can work out the rate
at which the driving force delivers energy. It is

P = F0 cos(ωt) ψ̇. (153)

That is

P = −mf0 cos(ωt) Aω sin(ωt + φ)

= −mf0Aω cos(ωt)[cos(ωt) sin(φ) + sin(ωt) cos(φ)] (154)

This oscillates about its average value. It is easy to work out what its average
value is if we use

〈cos(ωt) sin(ωt)〉 =
1

2π

∫ π

−π
dθ cos(θ) sin(θ) = 0 (155)
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in addition to our previous relations. We get

〈P 〉 = −1
2
mf0Aω sin(φ) =

mf 2
0

2

ω2γ

(ω2
0 − ω2)2 + γ2ω2

(156)

where we have used Eq. (??) in the second step. The amount of energy that
we add per cycle of the oscillator is

∆W ≡ 〈P 〉2π
ω

=
mf 2

0

2

2πωγ

(ω2
0 − ω2)2 + γ2ω2

. (157)

If γ is small, we see that we have to put in a lot of energy per cycle if ω is
close to ω0. If we choose ω = ω0, then

∆W =
mf 2

0

2ω2
0

2πQ. (158)

The ratio of the total energy to the energy added (and lost) per cycle to the
total energy is

∆W

〈W 〉 =
2π

Q
. (159)

Compare this to what will happen if we now stop the driving force. We
will have oscillations of the form

ψ(t) = A cos(ωf t + φ) e−γt/2. (160)

Then

ψ̇(t) = −ωfA sin(ωf t + φ) e−γt/2 − 1
2
γA cos(ωf t + φ) e−γt/2. (161)

We can calculate the energy as a function of time. It will have some little
wiggles in it, but each term in the energy has a factor

e−γt. (162)

[Note that it is γt and not γt/2 in the exponent because we have to square
ψ and ψ̇ to get terms in the energy.] Thus in one cycle, t = 2π/ω0, the
oscillator loses a fraction

2πγ

ω0

=
2π

Q
(163)
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of its energy. When we are driving the oscillator, its amplitude doesn’t decay
because we keep putting just this amount of energy back in.

Problem 17.1 Consider the average energy 〈W 〉 in a driven oscillator. Show
that this energy is mostly potential energy when ω � ω0 and is mostly kinetic
energy when ω 	 ω0, while it is an equal mixture of potential energy and
kinetic energy when ω = ω0.

18 The driven LRC circuit

An important example of everything that we have learned is the driven LRC
circuit. The study of this example can serve as a review.

Imagine three circuit elements attached in series: a coil with inductance L,
a resistor with resistance R, and a capacitor with capacitance C. Now attach
this string of circuit elements to a voltage source that supplies an oscillating
potential difference V = V0 cos(ωt) between its terminals, independent of
how much current is flowing through it. (We say that the source has no
internal resistance.) We then have

Lψ̈ + Rψ̇ +
1

C
ψ = V0 cos(ωt) (164)

where ψ is the charge on the capacitor and ψ̇ is the current in the circuit.
Dividing by L, we have

ψ̈ + γψ̇ + ω2
0ψ = f0 cos(ωt) (165)

where

γ =
R

L

ω2
0 =

1

LC

f0 =
V0

L
. (166)

We know from our previous analysis what this circuit will do. First, there
is a steady state solution,

ψs(t) = A cos(ωt + φ) (167)
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with A given by Eq. (??) and A sin(φ) given by Eq. (??) [except that now
the parameters ω0, γ and f0 refer to circuit elements instead of springs].

We also know that if f = 0 the general solution of Eq. (??) is

ψf (t) = Af cos(ωf t + φf ) e−γt/2 (168)

in the case that γ < 4ω2
0. Here

ωf =
√

ω2
0 − γ2/4. (169)

The two real parameters Af and φf can be adjusted to fit the initial con-
ditions. In the alternative that γ > 4ω2

0, the general solution of Eq. (??)
is

ψf (t) = C1 e−µ1t + C2 e−µ1t (170)

where

µ1 = 1
2
γ +

√
1
4
γ2 − ω2

0,

µ1 = 1
2
γ −

√
1
4
γ2 − ω2

0. (171)

Now in the case that we have before us, f0 is not zero. Nevertheless, the
free solutions are still useful. Think of our equation as

Dψ = f (172)

where

D =
d2

dt2
+ γ

d

dt
+ ω2

0 (173)

and f stands for the function

f(t) = f0 cos(ωt). (174)

Then we have one function ψs that satisfies Dψs = f and we have another
function ψf , which contains two adjustable parameters, that satisfies Dψf =
0. Thus if we put

ψ(t) = ψs(t) + ψf (t) (175)

we will have

Dψ = D(ψs + ψf ) = Dψs + Dψf = f + 0 = f. (176)
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Thus Eq. (??) gives us a solution of Eq. (??). Furthermore, this solution
has two adjustable parameters [either Af and φf or C1 and C2]. We can use
these parameters to fit whatever initial conditions might apply.

Note, finally, that the free oscillation part of the solution, ψf (t), fades
away after awhile because of its factor exp(−γt/2).

This pretty much summarizes everything except how to solve Dψ = f
and Dψ = 0. Personally, I don’t remember the solutions. Its easier to simply
remember how to get them.

To solve Dψ = 0, just assume a solution of the form

ψ = Cept. (177)

Then you get an algebraic equation

p2 + γp + ω2
0 = 0. (178)

Solving this gives one or the other of the two solutions depending on the sign
of γ2 − 4ω2

0. In the case γ2 < 4ω2
0, the possible values of p are complex, so

the simple solution Cept is complex. A real valued solution can be obtained
by adding two complex solutions. Another strategy, which amounts to the
same thing, is to simply take the real part of the complex solution.

To solve Dψ = f , we first replace f by f0 exp(iωt). At the end, we
will take the real part of our solution to get the solution to the original
equation. Then we assume a steady state solution of the form C exp(iωt)
with a complex constant C. This gives an algebraic equation

[−ω2 + iγω + ω2
0]C = f0. (179)

We just solve this for C.

Problem 18.1 Find the solution of Eq. (??) for the initial conditions ψ(0) = 0,
ψ̇(0) = 5 C s−1. Take ω = ω0 = 100 s−1, γ = 1 s−1, f0 = 3 C s−2. (“C” here
is Coulombs.) Note that the steady state solution is particularly simple for
ω = ω0. If you use this simplicity, you won’t get too bogged down with
algebra.
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